Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Quantitative mapping and minimization of super-resolution optical imaging artifacts

An Author Correction to this article was published on 19 October 2020

This article has been updated

Abstract

Super-resolution microscopy depends on steps that can contribute to the formation of image artifacts, leading to misinterpretation of biological information. We present NanoJ-SQUIRREL, an ImageJ-based analytical approach that provides quantitative assessment of super-resolution image quality. By comparing diffraction-limited images and super-resolution equivalents of the same acquisition volume, this approach generates a quantitative map of super-resolution defects and can guide researchers in optimizing imaging parameters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of quantitative error mapping with SQUIRREL.
Figure 2: Error mapping and FRC analysis.
Figure 3: Image fusion of SMLM data using SQUIRREL.

Similar content being viewed by others

Change history

  • 19 October 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Dempsey, G.T., Vaughan, J.C., Chen, K.H., Bates, M. & Zhuang, X. Nat. Methods 8, 1027–1036 (2011).

    Article  CAS  Google Scholar 

  2. Almada, P., Culley, S. & Henriques, R. Methods 88, 109–121 (2015).

    Article  CAS  Google Scholar 

  3. Pereira, P.M., Almada, P. & Henriques, R. Methods Cell Biol. 125, 95–117 (2015).

    Article  CAS  Google Scholar 

  4. van de Linde, S. et al. Nat. Protoc. 6, 991–1009 (2011).

    Article  CAS  Google Scholar 

  5. Sage, D. et al. Nat. Methods 12, 717–724 (2015).

    Article  CAS  Google Scholar 

  6. Pengo, T., Olivier, N. & Manley, S. Preprint at https://arxiv.org/abs/1501.05807 (2015).

  7. Fox-Roberts, P. et al. Nat. Commun. 8, 13558 (2017).

    Article  CAS  Google Scholar 

  8. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  9. Gustafsson, M.G. J. Microsc. 198, 82–87 (2000).

    Article  CAS  Google Scholar 

  10. Ball, G. et al. Sci. Rep. 5, 15915 (2015).

    Article  CAS  Google Scholar 

  11. Förster, R., Wicker, K., Müller, W., Jost, A. & Heintzmann, R. Opt. Express 24, 22121–22134 (2016).

    Article  Google Scholar 

  12. Schindelin, J. et al. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  13. Venkataramani, V., Herrmannsdörfer, F., Heilemann, M. & Kuner, T. Nat. Methods 13, 319–321 (2016).

    Article  Google Scholar 

  14. Gustafsson, N. et al. Nat. Commun. 7, 12471 (2016).

    Article  CAS  Google Scholar 

  15. Cyrklaff, M. et al. Proc. Natl. Acad. Sci. USA 102, 2772–2777 (2005).

    Article  CAS  Google Scholar 

  16. Nieuwenhuizen, R.P.J. et al. Nat. Methods 10, 557–562 (2013).

    Article  CAS  Google Scholar 

  17. Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. & Hagen, G.M. Bioinformatics 30, 2389–2390 (2014).

    Article  Google Scholar 

  18. Henriques, R. et al. Nat. Methods 7, 339–340 (2010).

    Article  CAS  Google Scholar 

  19. Müller, M., Mönkemöller, V., Hennig, S., Hübner, W. & Huser, T. Nat. Commun. 7, 10980 (2016).

    Article  Google Scholar 

  20. Kirshner, H., Aquet, F., Sage, D. & Unser, M. J. Microsc. 249, 13–25 (2013).

    Article  CAS  Google Scholar 

  21. Schmidt, F.I. et al. Cell Rep. 4, 464–476 (2013).

    Article  CAS  Google Scholar 

  22. Albrecht, D. et al. J. Cell Biol. 215, 37 (2016).

    Article  CAS  Google Scholar 

  23. Jungmann, R. et al. Nat. Methods 11, 313–318 (2014).

    Article  CAS  Google Scholar 

  24. Ganguly, A. et al. J. Cell Biol. 210, 401–417 (2015).

    Article  CAS  Google Scholar 

  25. Geissbuehler, S., Dellagiacoma, C. & Lasser, T. Biomed. Opt. Express 2, 408–420 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Knight (Holistx Ltd.) and S. Holden (Newcastle University) for critical reading of the manuscript; J. Ries (European Laboratory for Molecular Biology, Heidelberg) for provision of customized MATLAB software and critical reading of the manuscript; K. Tosheva (University College London) for critical reading of the manuscript and beta testing of the software; and B. Baum (University College London) for reagents. Many of the look-up tables used here are based on the open-source repository of D. Williamson at King′s College London. This work was funded by grants from the UK Biotechnology and Biological Sciences Research Council (BB/M022374/1; BB/P027431/1; BB/R000697/1) (R.H. and P.M.P.), MRC Programme Grant (MC_UU12018/7) (J.M.), the European Research Council (649101–UbiProPox) (J.M.), the UK Medical Research Council (MR/K015826/1) (R.H. and J.M.), the Wellcome Trust (203276/Z/16/Z) (S.C. and R.H.) and the Centre National de la Recherche Scientifique (CNRS ATIP-AVENIR program AO2016) (C.L.). D.A. is presently a Marie Curie fellow (Marie Sklodowska-Curie grant agreement No 750673). C.J. funded by a Commonwealth scholarship, funded by the UK government.

Author information

Authors and Affiliations

Authors

Contributions

S.C. and R.H. devised the conceptual framework and derived theoretical results. S.C., D.A., C.L., J.M., and R.H. planned experiments. S.C. and R.H. wrote the algorithm. Simulations were done by S.C. Experimental data sets were acquired by S.C. (Fig. 1), D.A. (Fig. 2; Supplementary Notes 4 and 7), C.J. (Fig. 2 and Supplementary Note 9), P.M.P. (Fig. 3), and C.L. (Supplementary Notes 5, 10, and 11). Data were analyzed by S.C. and D.A.; and C.L., J.M., and R.H. provided research advice. The paper was written by S.C., D.A., J.M., and R.H. with editing contributions from all the authors.

Corresponding authors

Correspondence to Christophe Leterrier, Jason Mercer or Ricardo Henriques.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Notes 1–11 (PDF 32445 kb)

Life Sciences Reporting Summary (PDF 161 kb)

Supplementary Software

Binaries, source code and user manual for NanoJ-SQUIRREL (ZIP 13406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Culley, S., Albrecht, D., Jacobs, C. et al. Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat Methods 15, 263–266 (2018). https://doi.org/10.1038/nmeth.4605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nmeth.4605

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics