Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas

Abstract

It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line–specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation of ASLs.
Figure 2: Library distribution of genes identified by EST and ASSETs sequencing (Table 1).
Figure 3: Efficiency of selection step.
Figure 4: Computational analysis of ASSETs.
Figure 5: Alternative splicing patterns.
Figure 6: Real-time PCR on selected ASSETs.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Shoemaker, D.D. et al. Experimental annotation of the human genome using microarray technology. Nature 409, 922–927 (2001).

    Article  CAS  Google Scholar 

  2. Zavolan, M. et al. Impact of alternative initiation, splicing, and termination on the diversity of the mRNA transcripts encoded by the mouse transcriptome. Genome Res. 13, 1290–1300 (2003).

    Article  CAS  Google Scholar 

  3. Brett, D. et al. EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett. 474, 83–86 (2000).

    Article  CAS  Google Scholar 

  4. Croft, L. et al. ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome. Nat. Genet. 24, 340–341 (2000).

    Article  CAS  Google Scholar 

  5. Liang, F. et al. Gene index analysis of the human genome estimates approximately 120,000 genes. Nat. Genet. 25, 239–240 (2000).

    Article  CAS  Google Scholar 

  6. Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2002).

    Article  Google Scholar 

  7. Krawczak, M., Reiss, J. & Cooper, D.N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet. 90, 41–45 (1992).

    Article  CAS  Google Scholar 

  8. Caceres, J.F. & Kornblihtt, A.R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18, 186–193 (2002).

    Article  CAS  Google Scholar 

  9. Faustino, N.A. & Cooper, T.A. Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437 (2003).

    Article  CAS  Google Scholar 

  10. Barrass, J.D. & Beggs, J.D. Splicing goes global. Trends Genet. 19, 295–298 (2003).

    Article  CAS  Google Scholar 

  11. Castle, J. et al. Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing. Genome Biol. 4, R66 (2003).

    Article  Google Scholar 

  12. Johnson, J.M. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003).

    Article  CAS  Google Scholar 

  13. Bartel, F., Taubert, H. & Harris, L.C. Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell 2, 9–15 (2002).

    Article  CAS  Google Scholar 

  14. Loo, J.C. et al. Germline splicing mutations of CDKN2A predispose to melanoma. Oncogene 22, 6387–6394 (2003).

    Article  CAS  Google Scholar 

  15. Houghton, A.N. & Polsky, D. Focus on melanoma. Cancer Cell 2, 275–278 (2002).

    Article  CAS  Google Scholar 

  16. Stekel, D.J., Git, Y. & Falciani, F. The comparison of gene expression from multiple cDNA libraries. Genome Res. 10, 2055–2061 (2000).

    Article  CAS  Google Scholar 

  17. Huang, X. On global sequence alignment. Comput. Appl. Biosci. 10, 227–235 (1994).

    CAS  PubMed  Google Scholar 

  18. Zorn, A.M. Wnt signalling: antagonistic Dickkopfs. Curr. Biol. 11, R592–R595 (2001).

    Article  CAS  Google Scholar 

  19. Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5, 578–581 (2003).

    Article  CAS  Google Scholar 

  20. Kaul, R. et al. Direct interaction with and activation of p53 by SMAR1 retards cell-cycle progression at G2/M phase and delays tumor growth in mice. Int. J. Cancer 103, 606–615 (2003).

    Article  CAS  Google Scholar 

  21. Sarangarajan, R., Budev, A., Zhao, Y., Gahl, W.A. & Boissy, R.E. Abnormal translocation of tyrosinase and tyrosinase-related protein 1 in cutaneous melanocytes of Hermansky-Pudlak Syndrome and in melanoma cells transfected with anti-sense HPS1 cDNA. J. Invest. Dermatol. 117, 641–646 (2001).

    Article  CAS  Google Scholar 

  22. Keresztes, G., Mutai, H. & Heller, S. TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins. BMC Genomics 4, 24 (2003).

    Article  Google Scholar 

  23. Ramoz, N. et al. Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat. Genet. 32, 579–581 (2002).

    Article  CAS  Google Scholar 

  24. Sini, P., Cannas, A., Koleske, A.J., Di Fiore, P.P. & Scita, G. Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation. Nat. Cell Biol. 6, 268–274 (2004).

    Article  CAS  Google Scholar 

  25. Lin, W.H. et al. Cloning, mapping, and characterization of the human sorbin and SH3 domain containing 1 (SORBS1) gene: a protein associated with c-Abl during insulin signaling in the hepatoma cell line Hep3B. Genomics 74, 12–20 (2001).

    Article  CAS  Google Scholar 

  26. Liang, Y. et al. Nudel functions in membrane traffic mainly through association with Lis1 and cytoplasmic dynein. J. Cell Biol. 164, 557–566 (2004).

    Article  CAS  Google Scholar 

  27. Haft, C.R., de la Luz Sierra, M., Barr, V.A., Haft, D.H. & Taylor, S.I. Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol. Cell. Biol. 18, 7278–7287 (1998).

    Article  CAS  Google Scholar 

  28. Li, B., Cong, F., Tan, C.P., Wang, S.X. & Goff, S.P. Aph2, a protein with a zf-DHHC motif, interacts with c-Abl and has pro-apoptotic activity. J. Biol. Chem. 277, 28870–28876 (2002).

    Article  CAS  Google Scholar 

  29. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  Google Scholar 

  30. Ge, K. et al. Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proc. Natl. Acad. Sci. USA 96, 9689–9694 (1999).

    Article  CAS  Google Scholar 

  31. Carninci, P. et al. Targeting a complex transcriptome: the construction of the mouse full-length cDNA encyclopedia. Genome Res. 13, 1273–1289 (2003).

    Article  Google Scholar 

  32. Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl. Acad. Sci. USA 100, 15776–15781 (2003).

    Article  CAS  Google Scholar 

  33. Sazani, P. & Kole, R. Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J. Clin. Invest. 112, 481–486 (2003).

    Article  CAS  Google Scholar 

  34. Vacek, M., Sazani, P. & Kole, R. Antisense-mediated redirection of mRNA splicing. Cell. Mol. Life Sci. 60, 825–833 (2003).

    Article  CAS  Google Scholar 

  35. Mercatante, D.R. & Kole, R. Control of alternative splicing by antisense oligonucleotides as a potential chemotherapy: effects on gene expression. Biochim. Biophys. Acta 1587, 126–132 (2002).

    Article  CAS  Google Scholar 

  36. Le Fur, N., Kelsall, S.R., Silvers, W.K. & Mintz, B. Selective increase in specific alternative splice variants of tyrosinase in murine melanomas: a projected basis for immunotherapy. Proc. Natl. Acad. Sci. USA 94, 5332–5337 (1997).

    Article  CAS  Google Scholar 

  37. Le Fur, N., Silvers, W.K., Kelsall, S.R. & Mintz, B. Up-regulation of specific tyrosinase mRNAs in mouse melanomas with the c2j gene substituted for the wild-type tyrosinase allele: utilization in design of syngeneic immunotherapy models. Proc. Natl. Acad. Sci. USA 94, 7561–7565 (1997).

    Article  CAS  Google Scholar 

  38. Bracco, L. & Kearsey, J. The relevance of alternative RNA splicing to pharmacogenomics. Trends Biotechnol. 21, 346–353 (2003).

    Article  CAS  Google Scholar 

  39. Camargo, A.A. et al. The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome. Proc. Natl. Acad. Sci. USA 98, 12103–12108 (2001).

    Article  Google Scholar 

  40. Burset, M., Seledtsov, I.A. & Solovyev, V.V. SpliceDB: database of canonical and non-canonical mammalian splice sites. Nucleic Acids Res. 29, 255–259 (2001).

    Article  CAS  Google Scholar 

  41. Wang, H. et al. Gene structure-based splice variant deconvolution using a microarry platform. Bioinformatics 19 Suppl 1, I315–I322 (2003).

    Article  Google Scholar 

  42. Carr, K.M., Bittner, M. & Trent, J.M. Gene-expression profiling in human cutaneous melanoma. Oncogene 22, 3076–3080 (2003).

    Article  CAS  Google Scholar 

  43. Chin, L. The genetics of malignant melanoma: lessons from mouse and man. Nat. Rev. Cancer 3, 559–570 (2003).

    Article  CAS  Google Scholar 

  44. Bowtell, D. & Sambrook, J. (eds.). DNA Microarrays: A Molecular Cloning Manual (Cold Spring Harbor Laboratory Press, New York, 2003).

    Google Scholar 

Download references

Acknowledgements

We thank E.V. Sviderskaya for providing cells from the Wellcome Trust Functional Genomics Cell Bank, W.J. Pavan for supplying RNA and encouragement, T. Hayashi for support and encouragement, H. Nishibe for secretarial assistance and N. Harigai for technical assistance. A Research Grant for the RIKEN Genome Exploration Research Project from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government to Y.H. and a RIKEN Presidential Research Grant for Innovation Tool Development to P.C. supported this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Harbers or Piero Carninci.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

New splicing events identified by sequencing of ASLs. (PDF 22 kb)

Supplementary Fig. 2

Computational Analysis and Annotation of ESTs and ASSETS (PDF 41 kb)

Supplementary Fig. 3

RT-PCR Analysis of randomly Selected ASSETS (PDF 271 kb)

Supplementary Fig. 4

ASSETS and full-length sequences for Aph2 (PDF 28 kb)

Supplementary Fig. 5

Curves for Real-time RT-PCR Experiments (PDF 267 kb)

Supplementary Table 1

Computational Analysis of ASSETS – 1 (PDF 27 kb)

Supplementary Table 2

Computational Analysis of ASSETS – 2 (PDF 13 kb)

Supplementary Table 3

Annotation of EST and ASSETS (PDF 12 kb)

Supplementary Table 4

High-quality targets Selected to Characterized Splice Types (PDF 101 kb)

Supplementary Table 5

Statistical analysis of splice types found in high- quality targets, and their location within the transcripts. (PDF 842 kb)

Supplementary Table 6

Important Genes Identified by ASSETS (PDF 14 kb)

Supplementary Table 7

Primers and Probes Used for Colony Hybridization (PDF 39 kb)

Supplementary Table 8

ASSETS specific Primer Sets for RT-PCR (PDF 15 kb)

Supplementary Table 9

ASSETS specific Primer Sets for Real-time PCR (PDF 27 kb)

Supplementary Methods

Preparation of ASLs, Colony Hybridization, RT-PCR, real-time PCR, and Sequencing (PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watahiki, A., Waki, K., Hayatsu, N. et al. Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas. Nat Methods 1, 233–239 (2004). https://doi.org/10.1038/nmeth719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nmeth719

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing