Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming

Abstract

In vision, balance and hearing, sensory receptor cells translate sensory stimuli into electrical signals whose amplitude is graded with stimulus intensity. The output synapses of these sensory neurons must provide fast signaling to follow rapidly changing stimuli while also transmitting graded information covering a wide range of stimulus intensity and must be able to sustain this signaling for long time periods. To meet these demands, specialized machinery for transmitter release, the synaptic ribbon, has evolved at the synaptic outputs of these neurons. We found that acute disruption of synaptic ribbons by photodamage to the ribbon markedly reduced both sustained and transient components of neurotransmitter release in mouse bipolar cells and salamander cones without affecting the ultrastructure of the ribbon or its ability to localize synaptic vesicles to the active zone. Our results indicate that ribbons mediate both slow and fast signaling at sensory synapses and support an additional role for the synaptic ribbon in priming vesicles for exocytosis at active zones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A synaptic ribbon-binding peptide exhibits irreversible photobleaching.
Figure 2: Ribbon-binding peptide has no effect on synaptic transmission.
Figure 3: Photodamage to the ribbon blocks replenishment of the immediately releasable pool in bipolar cell ribbon synapses.
Figure 4: Kinetic analysis of effects of photobleaching on AII postsynaptic response.
Figure 5: Effects of acute damage to cone photoreceptor ribbons on synaptic transmission.
Figure 6: Electron microscopy.

Similar content being viewed by others

References

  1. Cowan, W.M., Sudhof, T.C. & Stevens, C.F. Synapses (Johns Hopkins University Press, Baltimore, Maryland, 2001).

  2. LoGiudice, L. & Matthews, G. The role of ribbons at sensory synapses. Neuroscientist 15, 380–391 (2009).

    Article  CAS  Google Scholar 

  3. Lenzi, D. & von Gersdorff, H. Structure suggests function: the case for synaptic ribbons as exocytotic nanomachines. Bioessays 23, 831–840 (2001).

    Article  CAS  Google Scholar 

  4. Khimich, D. et al. Hair cell synaptic ribbons are essential for synchronous auditory signaling. Nature 434, 889–894 (2005).

    Article  CAS  Google Scholar 

  5. Davis, G.W. & Bezprozvanny, I. Maintaining the stability of neural function: a homeostatic hypothesis. Annu. Rev. Physiol. 63, 847–869 (2001).

    Article  CAS  Google Scholar 

  6. Surrey, T. et al. Chromophore-assisted light inactivation and self-organization of microtubules and motors. Proc. Natl. Acad. Sci. USA 95, 4293–4298 (1998).

    Article  CAS  Google Scholar 

  7. Hoffman-Kim, D., Diefenbach, T.J., Eustace, B.K. & Jay, D.G. Chromophore-assisted laser inactivation. Methods Cell Biol. 82, 335–354 (2007).

    Article  CAS  Google Scholar 

  8. Zenisek, D., Horst, N.K., Merrifield, C., Sterling, P. & Matthews, G. Visualizing synaptic ribbons in the living cell. J. Neurosci. 24, 9752–9759 (2004).

    Article  CAS  Google Scholar 

  9. Frank, T., Khimich, D., Neef, A. & Moser, T. Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells. Proc. Natl. Acad. Sci. USA 106, 4483–4488 (2009).

    Article  CAS  Google Scholar 

  10. LoGiudice, L., Sterling, P. & Matthews, G. Mobility and turnover of vesicles at the synaptic ribbon. J. Neurosci. 28, 3150–3158 (2008).

    Article  CAS  Google Scholar 

  11. Bartoletti, T.M., Babai, N. & Thoreson, W.B. Vesicle pool size at the salamander cone ribbon synapse. J. Neurophysiol. 103, 419–423 (2010).

    Article  CAS  Google Scholar 

  12. Choi, S.Y., Jackman, S., Thoreson, W.B. & Kramer, R.H. Light regulation of Ca2+ in the cone photoreceptor synaptic terminal. Vis. Neurosci. 25, 693–700 (2008).

    Article  Google Scholar 

  13. Singer, J.H., Lassova, L., Vardi, N. & Diamond, J.S. Coordinated multivesicular release at a mammalian ribbon synapse. Nat. Neurosci. 7, 826–833 (2004).

    Article  CAS  Google Scholar 

  14. Tsukamoto, Y., Morigiwa, K., Ueda, M. & Sterling, P. Microcircuits for night vision in mouse retina. J. Neurosci. 21, 8616–8623 (2001).

    Article  CAS  Google Scholar 

  15. Singer, J.H. & Diamond, J.S. Sustained Ca2+ entry elicits transient postsynaptic currents at a retinal ribbon synapse. J. Neurosci. 23, 10923–10933 (2003).

    Article  CAS  Google Scholar 

  16. Snellman, J., Zenisek, D. & Nawy, S. Switching between transient and sustained signaling at the rod bipolar-AII amacrine cell synapse of the mouse retina. J. Physiol. (Lond.) 587, 2443–2455 (2009).

    Article  CAS  Google Scholar 

  17. Mørkve, S.H., Veruki, M.L. & Hartveit, E. Functional characteristics of non-NMDA-type ionotropic glutamate receptor channels in AII amacrine cells in rat retina. J. Physiol. (Lond.) 542, 147–165 (2002).

    Article  Google Scholar 

  18. Veruki, M.L., Mørkve, S.H. & Hartveit, E. Functional properties of spontaneous EPSCs and non-NMDA receptors in rod amacrine (AII) cells in the rat retina. J. Physiol. (Lond.) 549, 759–774 (2003).

    Article  CAS  Google Scholar 

  19. von Gersdorff, H., Vardi, E., Matthews, G. & Sterling, P. Evidence that vesicles on the synaptic ribbon of retinal bipolar neurons can be rapidly released. Neuron 16, 1221–1227 (1996).

    Article  CAS  Google Scholar 

  20. Veruki, M.L., Morkve, S.H. & Hartveit, E. Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat. Neurosci. 9, 1388–1396 (2006).

    Article  CAS  Google Scholar 

  21. Palmer, M.J., Hull, C., Vigh, J. & von Gersdorff, H. Synaptic cleft acidification and modulation of short-term depression by exocytosed protons in retinal bipolar cells. J. Neurosci. 23, 11332–11341 (2003).

    Article  CAS  Google Scholar 

  22. Jarsky, T., Tian, M. & Singer, J.H. Nanodomain control of exocytosis is responsible for the signaling capability of a retinal ribbon synapse. J. Neurosci. 30, 11885–11895 (2010).

    Article  CAS  Google Scholar 

  23. DeVries, S.H. Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32, 1107–1117 (2001).

    Article  CAS  Google Scholar 

  24. Molloy, D.P. et al. Structural determinants present in the C-terminal binding protein binding site of adenovirus early region 1A proteins. J. Biol. Chem. 273, 20867–20876 (1998).

    Article  CAS  Google Scholar 

  25. Schmitz, F., Konigstorfer, A. & Sudhof, T.C. RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function. Neuron 28, 857–872 (2000).

    Article  CAS  Google Scholar 

  26. Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat. Cell Biol. 7, 570–580 (2005).

    Article  CAS  Google Scholar 

  27. Rabl, K., Cadetti, L. & Thoreson, W.B. Kinetics of exocytosis is faster in cones than in rods. J. Neurosci. 25, 4633–4640 (2005).

    Article  CAS  Google Scholar 

  28. Singer, J.H. & Diamond, J.S. Vesicle depletion and synaptic depression at a mammalian ribbon synapse. J. Neurophysiol. 95, 3191–3198 (2006).

    Article  CAS  Google Scholar 

  29. Heidelberger, R. Adenosine triphosphate and the late steps in calcium-dependent exocytosis at a ribbon synapse. J. Gen. Physiol. 111, 225–241 (1998).

    Article  CAS  Google Scholar 

  30. Heidelberger, R., Sterling, P. & Matthews, G. Roles of ATP in depletion and replenishment of the releasable pool of synaptic vesicles. J. Neurophysiol. 88, 98–106 (2002).

    Article  CAS  Google Scholar 

  31. Rizo, J. & Rosenmund, C. Synaptic vesicle fusion. Nat. Struct. Mol. Biol. 15, 665–674 (2008).

    Article  CAS  Google Scholar 

  32. tom Dieck, S. et al. Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J. Cell Biol. 168, 825–836 (2005).

    Article  Google Scholar 

  33. Dick, O. et al. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37, 775–786 (2003).

    Article  CAS  Google Scholar 

  34. Frank, T. et al. Bassoon and the synaptic ribbon organize Ca2+ channels and vesicles to add release sites and promote refilling. Neuron 68, 724–738 (2010).

    Article  CAS  Google Scholar 

  35. Zenisek, D., Steyer, J.A. & Almers, W. Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 406, 849–854 (2000).

    Article  CAS  Google Scholar 

  36. Zenisek, D. Vesicle association and exocytosis at ribbon and extraribbon sites in retinal bipolar cell presynaptic terminals. Proc. Natl. Acad. Sci. USA 105, 4922–4927 (2008).

    Article  CAS  Google Scholar 

  37. Midorikawa, M., Tsukamoto, Y., Berglund, K., Ishii, M. & Tachibana, M. Different roles of ribbon-associated and ribbon-free active zones in retinal bipolar cells. Nat. Neurosci. 10, 1268–1276 (2007).

    Article  CAS  Google Scholar 

  38. Coggins, M.R., Grabner, C.P., Almers, W. & Zenisek, D. Stimulated exocytosis of endosomes in goldfish retinal bipolar neurons. J. Physiol. (Lond.) 584, 853–865 (2007).

    Article  CAS  Google Scholar 

  39. Miller, R.F., Gottesman, J., Henderson, D., Sikora, M. & Kolb, H. Pre- and postsynaptic mechanisms of spontaneous, excitatory postsynaptic currents in the salamander retina. Prog. Brain Res. 131, 241–253 (2001).

    Article  CAS  Google Scholar 

  40. Wong-Riley, M.T. Synaptic orgnization of the inner plexiform layer in the retina of the tiger salamander. J. Neurocytol. 3, 1–33 (1974).

    Article  CAS  Google Scholar 

  41. Grünert, U., Haverkamp, S., Fletcher, E.L. & Wassle, H. Synaptic distribution of ionotropic glutamate receptors in the inner plexiform layer of the primate retina. J. Comp. Neurol. 447, 138–151 (2002).

    Article  Google Scholar 

  42. Hull, C., Studholme, K., Yazulla, S. & von Gersdorff, H. Diurnal changes in exocytosis and the number of synaptic ribbons at active zones of an ON-type bipolar cell terminal. J. Neurophysiol. 96, 2025–2033 (2006).

    Article  Google Scholar 

  43. Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515 (1994).

    Article  CAS  Google Scholar 

  44. von Gersdorff, H. & Matthews, G. Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367, 735–739 (1994).

    Article  CAS  Google Scholar 

  45. Thoreson, W.B., Rabl, K., Townes-Anderson, E. & Heidelberger, R. A highly Ca2+-sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse. Neuron 42, 595–605 (2004).

    Article  CAS  Google Scholar 

  46. Paillart, C., Li, J., Matthews, G. & Sterling, P. Endocytosis and vesicle recycling at a ribbon synapse. J. Neurosci. 23, 4092–4099 (2003).

    Article  CAS  Google Scholar 

  47. Johnson, S.L., Thomas, M.V. & Kros, C.J. Membrane capacitance measurement using patch clamp with integrated self-balancing lock-in amplifier. Pflugers Arch. 443, 653–663 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. Mentone for electron microscopy. This work was funded by US National Institutes of Health grants R01 EY003821 (G.M.), EY018111 (D.Z.) and EY10542 (W.T.), Yale University Vision Core grant EY000785 (M. Crair) and Research to Prevent Blindness (W.T.).

Author information

Authors and Affiliations

Authors

Contributions

J.S. conducted the experiments shown in Figures 2, 3, 4 and 6, analyzed the data shown in Figures 2, 3 and 4 and contributed to the editing and writing of the manuscript. B.M. performed the experiments and analysis shown in Figure 3. N.B., T.M.B. and W.T. performed and analyzed the experiments shown in Figure 5. W.T. also contributed to the editing and writing of the manuscript. W.A. performed the electron microscopy shown in Figure 6 and the Supplementary Figures. A.F. performed experiments shown in Figure 1. G.M. oversaw the electron microscopy experiments and contributed to the editing and writing of the manuscript. D.Z. prepared the manuscript, oversaw the project, performed experiments shown in Figure 1 and performed the analysis shown in Figures 1 and 6.

Corresponding author

Correspondence to David Zenisek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 2117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snellman, J., Mehta, B., Babai, N. et al. Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming. Nat Neurosci 14, 1135–1141 (2011). https://doi.org/10.1038/nn.2870

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nn.2870

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing