Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex

Abstract

Neurons in the primary visual cortex are highly selective for stimulus orientation, whereas their thalamic inputs are not. Much controversy has been focused on the mechanism by which cortical orientation selectivity arises. Although an increasing amount of evidence supports a linear model in which orientation selectivity is conferred upon visual cortical cells by the alignment of the receptive fields of their thalamic inputs, the controversy has recently been rekindled with the suggestion that late cortical input—delayed by multiple synapses—could lead to sharpening of orientation selectivity over time. Here we used intracellular recordings in vivo to examine temporal properties of the orientation-selective response to flashed gratings. Bayesian parameter estimation demonstrated that both preferred orientation and tuning width were stable throughout the response to a single stimulus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative membrane potential responses to single grating presentations.
Figure 2: Temporal analysis of the response of the cell shown in Fig. 1.
Figure 3: Parameter analysis for three additional example cells.
Figure 4: Summary changes in preferred orientation, tuning width and offset.
Figure 5: Time course of response to preferred and nearby orientations.

Similar content being viewed by others

References

  1. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture of cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  2. Ben-Yishai, R., Bar-Or, R. L. & Sompolinsky, H. Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA 92, 3844–3848 (1995).

    Article  CAS  Google Scholar 

  3. Somers, D. C., Nelson, S. B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).

    Article  CAS  Google Scholar 

  4. Ferster, D. & Miller, K. D. Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23, 441–471 (2000).

    Article  CAS  Google Scholar 

  5. Sillito, A. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J. Physiol. (Lond.) 250, 287–304 (1975).

    Article  CAS  Google Scholar 

  6. Eysel, U. T., Crook, J. M. & Machemer, H. F. GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex. Exp. Brain Res. 80, 626–630 (1990).

    Article  CAS  Google Scholar 

  7. Hata, Y., Tsumoto, T., Sato, H., Hagihara, K. & Tamura, H. Inhibition contributes to orientation selectivity in visual cortex of cat. Nature 335, 815–817 (1988).

    Article  CAS  Google Scholar 

  8. Gilbert, C. D. & Wiesel, T. N. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9, 2432–2442 (1989).

    Article  CAS  Google Scholar 

  9. Crook, J. M. & Eysel, U. T. GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): effects on orientation tuning. J. Neurosci. 12, 1816–1825 (1992).

    Article  CAS  Google Scholar 

  10. Krnjevic, K., Randic, M. & Straughan, D. W. An inhibitory process in the cerebral cortex. J. Physiol. (Lond.) 184, 16–48 (1966).

    Article  CAS  Google Scholar 

  11. Ferster, D. & Lindström, S. An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. J. Physiol. (Lond.) 342, 181–215 (1983).

    Article  CAS  Google Scholar 

  12. Hirsch, J. & Gilbert, C. D. Synaptic physiology of horizontal connections in the cat's visual cortex. J. Neurosci. 11, 1800–1809 (1991).

    Article  CAS  Google Scholar 

  13. Douglas, R. J. & Martin, K. A. C. A functional microcircuit for cat visual cortex. J. Physiol. (Lond.) 440, 735–769 (1991).

    Article  CAS  Google Scholar 

  14. Ringach, D. L., Hawken, M. J. & Shapley, R. Dynamics of orientation tuning in macaque primary visual cortex. Nature 387, 281–284 (1997).

    Article  CAS  Google Scholar 

  15. Celebrini, S., Thorpe, S., Trotter, Y. & Imbert, M. Dynamics of orientation coding in area V1 of the awake primate. Vis. Neurosci. 10, 811–825 (1993).

    Article  CAS  Google Scholar 

  16. Volgushev, M., Vidyasagar, T. R. & Pei, X. Dynamics of the orientation tuning of postsynaptic potentials in the cat visual cortex. Vis. Neurosci. 12, 621–638 (1995).

    Article  CAS  Google Scholar 

  17. Bonds, A. B. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Vis. Neurosci. 2, 41–55 (1989).

    Article  CAS  Google Scholar 

  18. Heeger, D. J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    Article  CAS  Google Scholar 

  19. DeAngelis, G. C., Robson, J. G., Ohzawa, I. & Freeman, R. D. Organization of suppression in receptive fields of neurons in cat visual cortex. J. Neurophysiol. 68, 144–163 (1992).

    Article  CAS  Google Scholar 

  20. Crair, M. C., Ruthazer, E. S., Gillespie, D. C. & Stryker, M. P. Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats. Neuron 19, 307–318 (1997).

    Article  CAS  Google Scholar 

  21. Gardner, J. L., Anzai, A., Ohzawa, I. & Freeman, R. D. Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex. Vis. Neurosci. 16, 1115–1121 (1999).

    Article  CAS  Google Scholar 

  22. Carandini, M. & Ferster, D. Membrane potential and firing rate in cat primary visual cortex. J. Neurosci. 20, 470–484 (2000).

    Article  CAS  Google Scholar 

  23. Swindale, N. V. Orientation tuning curves: empirical description and estimation of parameters. Biol. Cybern. 78, 45–56 (1998).

    Article  CAS  Google Scholar 

  24. Gilbert, C. D. & Wiesel, T. N. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res. 30, 1689–1701 (1990).

    Article  CAS  Google Scholar 

  25. Volgushev, M., Pernberg, J. & Eysel, U. T. Comparison of the selectivity of postsynaptic potentials and spike responses in cat visual cortex. Eur. J. Neurosci. 12, 257–263 (2000).

    Article  CAS  Google Scholar 

  26. Freeman, T. C. B., Durand, S., Kiper, D. C. & Carandini, M. Probing the source of cross-orientation suppression in the primary visual cortex. Invest. Ophthalmol. Vis. Sci. (in press).

  27. Ferster, D. Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex. J. Neurosci. 6, 1284–1301 (1986).

    Article  CAS  Google Scholar 

  28. Sivia, D. S. Data Analysis: A Bayesian Tutorial (Oxford, New York, 1996).

    Google Scholar 

Download references

Acknowledgements

The authors thank S. Solla, D. Goldreich and M. Kvale for helpful discussions, and S. Solla, K. Miller, M. Stryker and D. Sharon for comments on the manuscript. This work was supported by US National Institutes of Health grant RO1EYO4726 and the Human Frontiers Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deda C. Gillespie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillespie, D., Lampl, I., Anderson, J. et al. Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex. Nat Neurosci 4, 1014–1019 (2001). https://doi.org/10.1038/nn731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nn731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing