Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Laser-driven particle acceleration

The acceleration of charged particles to ultra-high energies by intense laser pulses could be made a reality by petawatt laser facilities. Laser-based approaches promise a low-cost, compact and simple alternative, compared with conventional accelerators.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GeV beam facilities.

SCIENCE AND TECHNOLOGY FACILITIES COUNCIL

Figure 2: Laser wakefield electron accelerator.

© 2006 AIP

Figure 3: State-of-the-art accelerator results.
Figure 4: A proton accelerator based on target normal sheath acceleration.

References

  1. Plettner, T. et al. Phys. Rev. ST Accel. Beams 8, 121301 (2005).

    Article  ADS  Google Scholar 

  2. Tajima, T. & Dawson, J. M. Phys. Rev. Lett. 43, 267–270 (1979).

    Article  ADS  Google Scholar 

  3. Pukhov, A. & Meyer-ter-Vehn, J. J. Appl. Phys. B 74, 355–361 (2002).

    Article  ADS  Google Scholar 

  4. Rosenzweig, J. B., Breizman, B., Katsouleas, T. & Su, J. J. Phys. Rev. A 44, R6189–R6192 (1991).

    Article  ADS  Google Scholar 

  5. Mangles, S. P. D. et al. Nature 431, 535–538 (2004).

    Article  ADS  Google Scholar 

  6. Geddes, C. et al. Nature 431, 538–541 (2004).

    Article  ADS  Google Scholar 

  7. Faure, J. et al. Nature 431, 541–544 (2004).

    Article  ADS  Google Scholar 

  8. Leemans, W. P. et al. Nature Phys. 2, 696–699 (2006).

    Article  ADS  Google Scholar 

  9. Mangles, S. P. D. et al. Plasma Phys. Contr. Fusion 48, B83–B90 (2006).

    Article  Google Scholar 

  10. Faure, J. et al. Nature 444, 737–739 (2006).

    Article  ADS  Google Scholar 

  11. Thomas, A. G. R. et al. Phys. Rev. Lett. 100, 255002 (2008).

    Article  ADS  Google Scholar 

  12. Schlenvoigt, H.-P. et al. Nature Phys. 4, 130–133 (2007).

    Article  ADS  Google Scholar 

  13. Gruener, F. et al. Appl. Phys. B 86, 431–435 (2007).

    Article  ADS  Google Scholar 

  14. Geloni, G., Saldin, E., Schneidmiller, E. & Yurkov, M. Nucl. Instrum. Meth. A 578, 34–46 (2007).

    Article  ADS  Google Scholar 

  15. Kneip, S. et al. Phys. Rev. Lett. 100, 105006 (2008).

    Article  ADS  Google Scholar 

  16. Lu, W., Huang, C., Zhou, M., Mori, W. B. & Katsouleas, T. et al. Phys. Rev. Lett. 96, 165002 (2006).

    Article  ADS  Google Scholar 

  17. Martins, S. F. et al. in Proc. Thirteenth Advanced Accelerator Concepts Workshop Vol. 1086 (eds Schroeder, C., Leemans, W. & Esarey, E.) 285–290 (AIP Press, 2009).

    Google Scholar 

  18. http://www.clf.rl.ac.uk

  19. http://www.extreme-light-infrastructure.eu

  20. Wilks, S. C. et al. Phys. Plasmas 8, 542–549 (2001).

    Article  ADS  Google Scholar 

  21. Fews, A. P. et al. Phys. Rev. Lett. 73, 1801–1804 (1994).

    Article  ADS  Google Scholar 

  22. Beg, F. N. et al. Phys. Plasmas 4, 447–457 (1997).

    Article  ADS  Google Scholar 

  23. Clark, E. L. et al. Phys. Rev. Lett. 84, 670–673 (2000).

    Article  ADS  Google Scholar 

  24. Snavely, R. A. et al. Phys. Rev. Lett. 85, 2945–2948 (2000).

    Article  ADS  Google Scholar 

  25. Cowan, T. E. et al. Phys. Rev. Lett. 92, 204801 (2004).

    Article  ADS  Google Scholar 

  26. Robson, L. et al. Nature Phys. 3, 58–62 (2006).

    Article  ADS  Google Scholar 

  27. Hegelich, B. M. et al. Nature 439, 441–444 (2006).

    Article  ADS  Google Scholar 

  28. Schwoerer, H. et al. Nature 439, 445–448 (2006).

    Article  ADS  Google Scholar 

  29. Robinson, A. P. L., Zepf, M., Kar, S., Evans, R. G. & Bellei, C. New J. Phys. 10, 013021 (2008).

    Article  ADS  Google Scholar 

  30. http://www.icuil.org

  31. Murphy, C.D. et al., Phys. Plasmas 13, 033108 (2006).

    Article  ADS  Google Scholar 

  32. Gibbon, P. Short Pulse Laser Interactions with Matter: An Introduction (Imperial College Press, 2005).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norreys, P. Laser-driven particle acceleration. Nature Photon 3, 423–425 (2009). https://doi.org/10.1038/nphoton.2009.119

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nphoton.2009.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing