Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
An artistic visualization of an isolator that is able to provide >100 dB of isolation for microwave signals. The design employs a one-way edge waveguide that spatially separates forward (red) and backward waves (blue), allowing for complete absorption of the backward-propagating mode without compromising the forward signal. The approach has a low insertion loss of just 1 dB and its frequency of operation is defined by the evanescent fields within the topological bandgap in the ferrite material that spans two octaves around 10 GHz.
Electrically induced single-photon emission and spin initialization of a silicon T centre in photonic structures is a promising step towards integrated spin–photon interfaces for quantum networks.
Thermodynamic-like phenomena in optics are a nascent yet elusive route to control light flow. By emulating Joule–Thomson expansion in synthetic photonic lattices, it is now possible to funnel light universally into a single output, regardless of the input.
A central goal of topological photonics has been to develop compact isolators using protected, non-reciprocal edge states. A recent demonstration of a ferrite-based microwave isolator leverages the magnon-induced topological photonic bandgap to achieve over 100 dB of isolation in a device smaller than a single free-space wavelength.
A new imaging platform combines a high-speed, multichannel camera system with an iterative spectral unmixing algorithm, enabling high-resolution imaging of up to seven distinct fluorophores, even under challenging live-cell conditions.
This Perspective offers practical guidelines for the optical characterization of chiral materials, aiming to improve the consistency and reproducibility of experimental results.
A terahertz field exceeding 1 V nm−1 induced a structural phase transition in the top atomic layer of a bulk WTe2 crystal. Differential imaging revealed a surface shift of 7 ± 3 pm and an electronic signature consistent with a topological phase transition.
Although typical microwave isolators provide 20 dB of isolation, a topological isolator—based on a one-way edge waveguide—enables 100 dB isolation due to the near-complete absorption of the backward-propagating mode. In theory, 200 dB of isolation is possible within a single-wavelength-size device.
A new p-type small molecule enhances defect passivation and improves interfacial charge transport in perovskite solar cells, enabling devices with a certified power conversion efficiency of 26.72%, 97% of which is maintained after 2,500 h of continuous operation.
A photonic processor based on a diffractive tensorized unit enables million-TOPS general-purpose computing. The approach challenges the generality and scalability constraints of diffractive computing and enables orders-of-magnitude improvements in energy efficiency over a high-end electronic tensor core processor.
Organic permeable base transistors featuring a porous aluminium electrode within the semiconductor channel enable high photo-gain and charge storage simultaneously. The transistors achieve retention times beyond 10.000 s while operating at less than 2 V with responsivity as high as 109 A W−1.
A wide-field microscope capable of simultaneously measuring circular dichroism and circular birefringence signals over wide fields of view of the order of hundreds of micrometres is demonstrated, addressing the challenge of spatially resolving chiral heterogeneity in materials and biomolecules.
Using the well-established foundry-based lithium niobate nanophotonics platform, a general electro-optic digital-to-analogue link with ultrahigh bandwidth (>150 Gb s−1) and ultralow power consumption (0.058 pJ b−1) is demonstrated, providing a direct, energy-efficient, high-speed and scalable solution for interfacing digital electronics and photonics.
By exploiting an optical thermodynamic framework, researchers demonstrate universal routing of light. Specifically, light launched into any input port of a nonlinear array is universally channelled into a tightly localized ground state. The principles of optical thermodynamics demonstrated may enable new optical functionalities.
Triangle-beam interference structured illumination microscopy leverages radially polarized beams to generate two-dimensional lattice illumination patterns. The technique enables a temporal resolution of 242 Hz, spatial resolution of 100 nm and continuous imaging of neuronal growth for up to 13 h.
Two types of on-chip silicon device utilizing silicon T centres are developed: an O-band light-emitting diode and an electrically triggered single-photon source. Further, a new method of spin initialization with electrical excitation is demonstrated.
An optical sieve—an array of optically resonant voids in gallium arsenide—enables sorting, detecting and counting nanoplastics as small as a few hundreds of nanometres at concentrations as low as 150 μg ml−1 in lake water samples.
A tree-like arrangement of dichroic mirrors and multiple cameras coupled with an iterative spectral unmixing algorithm enables multispectral imaging of live cells in up to eight spectral channels with diffraction-limited spatial resolution and temporal resolution of 0.3 s for imaging a full cell volume.