Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Signature of effective mass in crackling-noise asymmetry

Abstract

Crackling noise is a common feature in many dynamic systems1,2,3,4,5,6,7,8,9, the most familiar instance of which is the sound made by a sheet of paper when crumpled into a ball. Although seemingly random, this noise contains fundamental information about the properties of the system in which it occurs. One potential source of such information lies in the asymmetric shape of noise pulses emitted by a diverse range of noisy systems8,9,10,11,12, but the cause of this asymmetry has lacked explanation1. Here we show that the leftward asymmetry observed in the Barkhausen effect2 — the noise generated by the jerky motion of domain walls as they interact with impurities in a soft magnet—is a direct consequence of a magnetic domain wall’s negative effective mass. As well as providing a means of determining domain-wall effective mass from a magnet’s Barkhausen noise, our work suggests an inertial explanation for the origin of avalanche asymmetries in crackling-noise phenomena more generally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experimental setup.
Figure 2: Comparison of the average pulse shapes in the experiments and in the model.
Figure 3: Skewness of avalanches in experiments.
Figure 4: Skewness of avalanches in the model.

Similar content being viewed by others

References

  1. Sethna, J., Dahmen, K. A. & Myers, C. R. Crackling noise. Nature 410, 242–244 (2001).

    ADS  Google Scholar 

  2. Durin, G. & Zapperi, S. in The Science of Hysteresis (eds Bertotti, G. & Mayergoyz, I.) 181–267 (Academic, New York, 2005).

    MATH  Google Scholar 

  3. Field, S., Witt, J., Nori, F. & Ling, X. Superconducting vortex avalanches. Phys. Rev. Lett. 74, 1206–1209 (1995).

    ADS  Google Scholar 

  4. Colla, E. V., Chao, L. K. & Weissman, M. B. Barkhausen noise in a relaxor ferroelectric. Phys. Rev. Lett. 88, 017601 (2002).

    ADS  Google Scholar 

  5. Mitchell, T. B., Bollinger, J. J., Itano, W. M. & Dubin, D. H. E. Stick-slip dynamics of a stressed ion crystal. Phys. Rev. Lett. 87, 183001 (2001).

    ADS  Google Scholar 

  6. Petri, A., Paparo, G., Vespignani, A., Alippi, A. & Costantini, M. Experimental evidence for critical dynamics in microfracturing processes. Phys. Rev. Lett. 73, 3423–3426 (1994).

    ADS  Google Scholar 

  7. Miguel, M. C., Vespignani, A., Zapperi, S., Weiss, J. & Grasso, J. R. Intermittent dislocation flow in viscoplastic deformation. Nature 410, 667–670 (2001).

    ADS  Google Scholar 

  8. Houston, H., Benz, H. M. & Vidale, J. E. J. Geophys. Res. 103, 29895–29913 (1998).

    ADS  Google Scholar 

  9. Mehta, A. P., Dahmen, K. A. & Ben-Zion, Y. Universal shape profiles of earthquake ruptures. cond-mat/0403567 (2004).

  10. Spasojevic, D., Bukvic, S., Milosevic, S. & Stanley, H. E. Barkhausen noise: elementary signals, power laws, and scaling relations. Phys. Rev. E 54, 2531–2546 (1996).

    ADS  Google Scholar 

  11. Durin, G. & Zapperi, S. On the power spectrum of magnetization noise. J. Magn. Magn. Mater. 242–245, 1085–1088 (2002).

    ADS  Google Scholar 

  12. Mehta, A., Mills, A., Dahmen, K. & Sethna, J. Universal pulse shape scaling function and exponents: a critical test for avalanche models applied to Barkhausen noise. Phys. Rev. E 65, 046139 (2002).

    ADS  Google Scholar 

  13. O’Brien, K. P. & Weissman, M. B. Statistical characterization of Barkhausen noise. Phys. Rev. E 50, 3446–3452 (1994).

    ADS  Google Scholar 

  14. Colaiori, F., Durin, G. & Zapperi, S. Shape of a Barkhausen pulse. J. Magn. Magn. Mater. 272–276, E533–E534 (2004).

    Google Scholar 

  15. Durin, G. & Zapperi, S. Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets. Phys. Rev. Lett. 84, 4075–4078 (2000).

    Google Scholar 

  16. Döring, W. Über die tragheit der wände zwischen weisschen bezirken. Z. Naturforsch. a 3, 373–379 (1948).

    ADS  MATH  Google Scholar 

  17. Hubert, A. & Schäfer, R. Magnetic Domains (Springer, New York, 1998).

    Google Scholar 

  18. Rado, G. T., Wright, R. W. & Emerson, W. H. Ferromagnetism at very high frequencies. iii. Two mechanisms of dispersion in a ferrite. Phys. Rev. 80, 273–280 (1950).

    ADS  Google Scholar 

  19. Bertotti, G. Hysteresis in Magnetism (Academic, San Diego, 1998).

    Google Scholar 

  20. Alessandro, B., Beatrice, C., Bertotti, G. & Montorsi, A. Domain wall dynamics and Barkhausen effect in metallic ferromagnetic materials. i. Theory. J. Appl. Phys. 68, 2901–2908 (1990).

    ADS  Google Scholar 

  21. Zapperi, S., Cizeau, P., Durin, G. & Stanley, H. E. Dynamics of a ferromagnetic domain wall: avalanches, depinning transition and the Barkhausen effect. Phys. Rev. B 58, 6353–6366 (1998).

    ADS  Google Scholar 

  22. Mills, A. C., Hess, F. M. & Weissman, M. B. Statistics of the pinning field in a soft metallic ferromagnet. Phys. Rev. B 66, 140409(R) (2002).

    ADS  Google Scholar 

  23. Bishop, J. E. L. The contribution made by eddy currents to the effective mass of a magnetic domain wall. J. Phys. D 13, L15–L19 (1980).

    ADS  Google Scholar 

  24. Baldassarri, A., Colaiori, F. & Castellano, C. The average shape of a fluctuation: universality in excursions of stochastic processes. Phys. Rev. Lett. 90, 060601 (2003).

    ADS  Google Scholar 

  25. Schwarz, J. M. & Fisher, D. S. Depinning with dynamic stress overshoots: Mean field theory. Phys. Rev. Lett. 87, 096107 (2001).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Castellano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Domain Wall Motion

Domain wall motion in a soft magnetic material under the application of a slow varying magnetic field. The field is applied along the vertical direction, first up and then reversed. The jerky motion of the domain wall as it interacts with defects yields the Barkhausen effect. (MOV 1450 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapperi, S., Castellano, C., Colaiori, F. et al. Signature of effective mass in crackling-noise asymmetry. Nature Phys 1, 46–49 (2005). https://doi.org/10.1038/nphys101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing