Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-photon probe of the Jaynes–Cummings model and controlled symmetry breaking in circuit QED

Abstract

Superconducting qubits1,2 behave as artificial two-level atoms and are used to investigate fundamental quantum phenomena. In this context, the study of multiphoton excitations3,4,5,6,7 occupies an important role. Moreover, coupling superconducting qubits to onchip microwave resonators has given rise to the field of circuit quantum electrodynamics8,9,10,11,12,13,14,15 (QED). In contrast to quantum-optical cavity QED (refs 16, 17, 18, 19), circuit QED offers the tunability inherent to solid-state circuits. Here, we report on the observation of key signatures of a two-photon-driven Jaynes–Cummings model, which unveils the upconversion dynamics of a superconducting flux qubit20 coupled to an on-chip resonator. Our experiment and theoretical analysis show clear evidence for the coexistence of one- and two-photon-driven level anticrossings of the qubit–resonator system. This results from the controlled symmetry breaking of the system hamiltonian, causing parity to become a not-well-defined property21. Our study provides fundamental insight into the interplay of multiphoton processes and symmetries in a qubit–resonator system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental architecture and theoretical model.
Figure 2: Qubit microwave spectroscopy: data and simulations.
Figure 3: Qubit microwave spectroscopy close to the qubit–resonator anticrossing under two-photon driving: data and simulations.
Figure 4: Two-photon spectroscopy simulations close to the optimal point using the time-trace-averaging method.

Similar content being viewed by others

References

  1. Makhlin, Y., Schön, G. & Shnirman, A. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001).

    Article  ADS  Google Scholar 

  2. Wendin, G. & Shumeiko, V. S. in Handbook of Theoretical and Computational Nanotechnology Vol. 3 (eds Rieth, M. & Schommers, W.) 223–309 (American Scientific Publishers, Los Angeles, 2006).

    Google Scholar 

  3. Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Rabi oscillations in a Josephson-junction charge two-level system. Phys. Rev. Lett. 87, 246601 (2001).

    Article  ADS  Google Scholar 

  4. Oliver, W. D. et al. Mach–Zehnder interferometry in a strongly driven superconducting qubit. Science 310, 1653–1657 (2005).

    Article  ADS  Google Scholar 

  5. Saito, S. et al. Parametric control of a superconducting flux qubit. Phys. Rev. Lett. 96, 107001 (2006).

    Article  ADS  Google Scholar 

  6. Sillanpää, M., Lehtinen, T., Paila, A., Makhlin, Y. & Hakonen, P. J. Continuous-time monitoring of Landau–Zener interference in a Cooper-pair box. Phys. Rev. Lett. 96, 187002 (2006).

    Article  ADS  Google Scholar 

  7. Wilson, C. M. et al. Coherence times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett. 98, 257003 (2007).

    Article  ADS  Google Scholar 

  8. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  9. Chiorescu, I. et al. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–162 (2004).

    Article  ADS  Google Scholar 

  10. Johansson, J. et al. Vacuum Rabi oscillations in a macroscopic superconducting qubit LC oscillator system. Phys. Rev. Lett. 96, 127006 (2006).

    Article  ADS  Google Scholar 

  11. Houck, A. A. et al. Generating single microwave photons in a circuit. Nature 449, 328–331 (2007).

    Article  ADS  Google Scholar 

  12. Astafiev, O. et al. Single artificial-atom lasing. Nature 449, 588–590 (2007).

    Article  ADS  Google Scholar 

  13. Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007).

    Article  ADS  Google Scholar 

  14. Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

    Article  ADS  Google Scholar 

  15. Wallraff, A. et al. Sideband transitions and two-tone spectroscopy of a superconducting qubit strongly coupled to an on-chip cavity. Phys. Rev. Lett. 99, 050501 (2007).

    Article  ADS  Google Scholar 

  16. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    Article  ADS  Google Scholar 

  17. Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: coherence in context. Science 298, 1372–1377 (2002).

    Article  ADS  Google Scholar 

  18. Haroche, S. & Raimond, J.-M. Exploring the Quantum (Oxford Univ. Press, New York, 2006).

    Book  Google Scholar 

  19. Walther, H., Varcoe, B. T. H., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006).

    Article  ADS  Google Scholar 

  20. Orlando, T. P. et al. Superconducting persistent-current qubit. Phys. Rev. B 60, 15398–15413 (1999).

    Article  ADS  Google Scholar 

  21. Liu, Y-X, You, J. Q., Wei, L. F., Sun, C. P. & Nori, F. Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005).

    Article  ADS  Google Scholar 

  22. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article  ADS  Google Scholar 

  23. Simmonds, R. W. et al. Decoherence in Josephson phase qubits from junction resonators. Phys. Rev. Lett. 93, 077003 (2004).

    Article  ADS  Google Scholar 

  24. Deppe, F. et al. Phase coherent dynamics of a superconducting flux qubit with capacitive bias readout. Phys. Rev. B 76, 214503 (2007).

    Article  ADS  Google Scholar 

  25. Kakuyanagi, K. et al. Dephasing of a superconducting flux qubit. Phys. Rev. Lett. 98, 047004 (2007).

    Article  ADS  Google Scholar 

  26. Mariantoni, M. et al. On-chip microwave Fock states and quantum homodyne measurements. Preprint at <http://arxiv.org/abs/cond-mat/0509737> (2005).

  27. Liu, Y-X, Wei, L. F. & Nori, F. Generation of non-classical photon states using a superconducting qubit in a microcavity. Europhys. Lett. 67, 941–947 (2004).

    Article  ADS  Google Scholar 

  28. Moon, K. & Girvin, S. M. Theory of microwave parametric down-conversion and squeezing using circuit QED. Phys. Rev. Lett. 95, 140504 (2005).

    Article  ADS  Google Scholar 

  29. Cohen-Tannoudji, C., Diu, B. & Laloë, F. Quantum Mechanics (Wiley–Interscience, New York, 1977).

    MATH  Google Scholar 

  30. Buckel, W. & Kleiner, R. Superconductivity (Wiley–VCH, Berlin, 2004).

    Book  Google Scholar 

Download references

Acknowledgements

We thank H. Christ for fruitful discussions. This work is supported by the Deutsche Forschungsgesellschaft through the Sonderforschungsbereich 631. Financial support by the Excellence Cluster ‘Nanosystems Initiative Munich (NIM)’, the EuroSQIP EU project, the Ikerbasque Foundation and UPV-EHU Grant GIU07/40 is gratefully acknowledged. This work is partially supported by CREST-JST, JSPS-KAKENHI(18201018) and MEXT-KAKENHI(18001002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Deppe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deppe, F., Mariantoni, M., Menzel, E. et al. Two-photon probe of the Jaynes–Cummings model and controlled symmetry breaking in circuit QED. Nature Phys 4, 686–691 (2008). https://doi.org/10.1038/nphys1016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1016

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing