Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong correlations make high-temperature superconductors robust against disorder

Abstract

Strong correlations are central to the problem of high-temperature superconductivity in the cuprates1,2,3,4. Correlations are responsible for both the Mott insulating, antiferromagnetic state in the parent compounds and for the d-wave superconducting state that arises on doping with mobile charge carriers. An important experimental fact about the superconducting state is its insensitivity to disorder5, in marked contrast with conventional theories of d-wave pairing, which predict just the opposite. Here, we generalize the theory of the strongly correlated superconducting ground state based on projected wavefunctions6,7,8,9 to include impurity effects and find the remarkable result that correlations play a central role in making the superconductor robust against disorder. The nodal quasiparticles, which are the low-energy electronic excitations, are protected against disorder leading to characteristic signatures in scanning tunnelling spectroscopy10,11,12,13,14 and angle-resolved photoemission15,16,17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatially averaged DOS.
Figure 2: Spectral function A(k,ω).
Figure 3: Local pairing amplitude Δ(r).

Similar content being viewed by others

References

  1. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  Google Scholar 

  2. Kotliar, G. & Liu, J. Superexchange mechanism and d-wave superconductivity. Phys. Rev. B 38, 5142–5145 (1988).

    Article  ADS  Google Scholar 

  3. Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: The ‘plain vanilla’ version of RVB. J. Phys. Condens. Matter 16, R755–R769 (2004).

    Article  Google Scholar 

  4. Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  5. Alloul, H., Bobroff, J., Gabay, M. & Hirschfeld, P. J. Defects in correlated metals and superconductors. Preprint at <http://arxiv.org/abs/0711.0877> (2007).

  6. Zhang, F. C., Gros, C., Rice, T. M. & Shiba, H. A renormalised hamiltonian approach for a resonant valence bond wavefunction. Supercond. Sci. Technol. 1, 36–45 (1988).

    Article  ADS  Google Scholar 

  7. Paramekanti, A., Randeria, M. & Trivedi, N. Projected wavefunctions and high temperature superconductivity. Phys. Rev. Lett. 87, 217002 (2001).

    Article  ADS  Google Scholar 

  8. Paramekanti, A., Randeria, M. & Trivedi, N. High Tc superconductors: A variational theory of the superconducting state. Phys. Rev. B 70, 054504 (2004).

    Article  ADS  Google Scholar 

  9. Edegger, B., Gros, C. & Muthukumar, V. N. Gutzwiller-RVB theory of high temperature superconductivity: Results from renormalised mean field theory and variational Monte Carlo calculations. Adv. Phys. 56, 927–1033 (2007).

    Article  ADS  Google Scholar 

  10. Pan, S. H. et al. Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Nature 413, 282–285 (2001).

    Article  ADS  Google Scholar 

  11. McElroy, K. et al. Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 94, 197005 (2005).

    Article  ADS  Google Scholar 

  12. Vershinin, M. et al. Local ordering in the pseudogap state of the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Science 303, 1995–1998 (2004).

    Article  ADS  Google Scholar 

  13. McElroy, K. et al. Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi2Sr2CaCu2O8+δ . Science 309, 1048–1052 (2005).

    Article  ADS  Google Scholar 

  14. Pasupathy, A. N. et al. Electronic origin of the inhomogeneous pairing interaction in the high-Tc superconductor BiSrCaCuO. Science 320, 196–201 (2008).

    Article  ADS  Google Scholar 

  15. Campuzano, J. C., Norman, M. R. & Randeria, M. in Physics of Superconductors Vol. II (eds Bennemann, K. H. & Ketterson, J. B.) 167–273 (Springer, Berlin, 2004).

    Book  Google Scholar 

  16. Zhou, X. J. et al. Dichotomy between nodal and antinodal quasiparticles in underdoped (La2−xSrx)CuO4 superconductors. Phys. Rev. Lett. 92, 187001 (2004).

    Article  ADS  Google Scholar 

  17. Shen, K. M. et al. Nodal quasiparticles and antinodal charge ordering in Ca2−xNaxCuO2Cl2 . Science 307, 901–904 (2005).

    Article  ADS  Google Scholar 

  18. Abrikosov, A. A. & Gorkov, L. P. Theory of superconducting alloys with paramagnetic impurities. Sov. Phys. JETP 12, 1243 (1961); Zh. Eksp. Teor. Fiz. 39, 1781–1796 (1960).

  19. Balatsky, A. V., Vekhter, I. & Zhu, J-X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

    Article  ADS  Google Scholar 

  20. Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).

    Article  ADS  Google Scholar 

  21. Atkinson, W. A., Hirschfeld, P. J. & MacDonald, A. H. Gap inhomogeneities and the density of states in disordered d-wave superconductors. Phys. Rev. Lett. 85, 3922–3925 (2000).

    Article  ADS  Google Scholar 

  22. Ghosal, A., Randeria, M. & Trivedi, N. Spatial inhomogeneities in disordered d-wave superconductors. Phys. Rev. B 63, 020505 (2000).

    Article  Google Scholar 

  23. Nunner, T. S., Andersen, B. M., Melikyan, A. & Hirschfeld, P. J. Dopant-modulated pair interaction in cuprate superconductors. Phys. Rev. Lett. 95, 177003 (2005).

    Article  ADS  Google Scholar 

  24. Wang, Z., Engelbrecht, J. R., Wang, S., Ding, H. & Pan, S. H. Inhomogeneous d-wave superconducting state of a doped Mott insulator. Phys. Rev. B 65, 064509 (2002).

    Article  ADS  Google Scholar 

  25. Wang, Q-H., Wang, Z. D., Chen, Y. & Zhang, F. C. Unrestricted renormalized mean field theory of strongly correlated electron systems. Phys. Rev. B 73, 092507 (2006).

    Article  ADS  Google Scholar 

  26. Sensarma, R., Randeria, M. & Trivedi, N. Can one determine the underlying Fermi surface in the superconducting state of strongly correlated systems? Phys. Rev. Lett. 98, 027004 (2007).

    Article  ADS  Google Scholar 

  27. Haas, S., Balatsky, A. V., Sigrist, M. & Rice, T. M. Extended gapless regions in disordered d x 2 − y 2 wave superconductors. Phys. Rev. B 56, 5108–5111 (1997).

    Google Scholar 

  28. Nachumi, B. et al. Muon spin relaxation studies of Zn-substitution effects in high-Tc cuprate superconductors. Phys. Rev. Lett. 77, 5421–5424 (1996).

    Article  ADS  Google Scholar 

  29. Tsuchiura, H., Tanaka, Y., Ogata, M. & Kashiwaya, S. Quasiparticle properties around a nonmagnetic impurity in the superconducting state of the two-dimensional t–J model. J. Phys. Soc. Jpn. 68, 2510–2513 (1999).

    Article  ADS  Google Scholar 

  30. Randeria, M., Sensarma, R., Trivedi, N. & Zhang, F. C. Particle–hole asymmetry in doped Mott insulators: Implications for tunneling and photoemission spectroscopies. Phys. Rev. Lett. 95, 137001 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Sensarma for discussions and gratefully acknowledge support by NSF-DMR 0706203 (M.R.) and DOE DE-FG02-07ER46423 (N.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandini Trivedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, A., Randeria, M. & Trivedi, N. Strong correlations make high-temperature superconductors robust against disorder. Nature Phys 4, 762–765 (2008). https://doi.org/10.1038/nphys1026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing