Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermodynamic signature of growing amorphous order in glass-forming liquids

Abstract

Supercooled liquids exhibit a pronounced slowdown of their dynamics on cooling1 without showing any obvious structural or thermodynamic changes2. Several theories relate this slowdown to increasing spatial correlations3,4,5,6. However, no sign of this is seen in standard static correlation functions, despite indirect evidence from considering specific heat7 and linear dielectric susceptibility8. Whereas the dynamic correlation function progressively becomes more non-exponential as the temperature is reduced, so far no similar signature has been found in static correlations that can distinguish qualitatively between a high-temperature and a deeply supercooled glass-forming liquid in equilibrium. Here, we show evidence of a qualitative thermodynamic signature that differentiates between the two. We show by numerical simulations with fixed boundary conditions that the influence of the boundary propagates into the bulk over increasing length scales on cooling. With the increase of this static correlation length, the influence of the boundary decays non-exponentially. Such long-range susceptibility to boundary conditions is expected within the random first-order theory4,9,10 (RFOT) of the glass transition. However, a quantitative account of our numerical results requires a generalization of RFOT, taking into account surface tension fluctuations between states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Change of the overlap with mobile cavity size.
Figure 2: Non-exponentiality of the overlap decay at low temperatures.
Figure 3: Comparison with previous numerical results.

Similar content being viewed by others

References

  1. Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200 (1996).

    Article  Google Scholar 

  2. Leheny, R. L. et al. Structural studies of an organic liquid through the glass transition. J. Chem. Phys. 105, 7783–7794 (1996).

    Article  ADS  Google Scholar 

  3. Gibbs, J. H. & DiMarzio, E. A. Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373–383 (1958).

    Article  ADS  Google Scholar 

  4. Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989).

    Article  ADS  Google Scholar 

  5. Garrahan, J. P. & Chandler, D. Geometrical explanation and scaling of dynamical heterogeneities in glass forming systems. Phys. Rev. Lett. 89, 035704 (2002).

    Article  ADS  Google Scholar 

  6. Tarjus, G., Kivelson, S. A., Nussinov, Z. & Viot, P. The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment. J. Phys. Condens. Matter 17, R1143 (2005).

    Article  ADS  Google Scholar 

  7. Fernández, L. A., Martín-Mayor, V. & Verrocchio, P. Critical behavior of the specific heat in glass formers. Phys. Rev. E 73, 020501 (2006).

    Article  ADS  Google Scholar 

  8. Menon, N. & Nagel, S. R. Evidence for a divergent susceptibility at the glass transition. Phys. Rev. Lett. 74, 1230–1233 (1995).

    Article  ADS  Google Scholar 

  9. Bouchaud, J.-P. & Biroli, G. On the Adam–Gibbs–Kirkpatrick–Thirumalai–Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347–7354 (2004).

    Article  ADS  Google Scholar 

  10. Dzero, M., Schmalian, J. & Wolynes, P. G. Activated events in glasses: The structure of entropic droplets. Phys. Rev. B 72, 100201 (2005).

    Article  ADS  Google Scholar 

  11. Montanari, A. & Semerjian, G. Rigorous inequalities between length and timescales in glassy systems. J. Stat. Phys. 125, 23–54 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  12. Bouchaud, J.-P. & Biroli, G. Nonlinear susceptibility in glassy systems: A probe for cooperative dynamical length scales. Phys. Rev. B 72, 064204 (2005).

    Article  ADS  Google Scholar 

  13. Coluzzi, B., Mezard, M., Parisi, G. & Verrocchio, P. Thermodynamics of binary mixture glasses. J. Chem. Phys. 111, 9039–9052 (1999).

    Article  ADS  Google Scholar 

  14. Kivelson, D., Tarjus, G. & Kivelson, S. A. A viewpoint, model and theory for supercooled liquids. Prog. Theor. Phys. Suppl. 126, 289–299 (1997).

    Article  ADS  Google Scholar 

  15. Toninelli, C., Biroli, G. & Fisher, D. S. Jamming percolation and glass transitions in lattice models. Phys. Rev. Lett. 96, 035702 (2006).

    Article  ADS  Google Scholar 

  16. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    Article  ADS  Google Scholar 

  17. Berthier, L. et al. Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797–1800 (2005).

    Article  ADS  Google Scholar 

  18. Toninelli, C., Wyart, M., Berthier, L., Biroli, G. & Bouchaud, J.-P. Dynamical susceptibility of glass formers: Contrasting the predictions of theoretical scenarios. Phys. Rev. E 71, 041505 (2005).

    Article  ADS  Google Scholar 

  19. Scheidler, P., Kob, W. & Binder, K. The relaxation dynamics of a supercooled liquid confined by rough walls. J. Phys. Chem. B 108, 6673–6686 (2004).

    Article  Google Scholar 

  20. Jack, R. L. & Garrahan, J. P. Caging and mosaic length scales in plaquette spin models of glasses. J. Chem. Phys. 123, 164508 (2005).

    Article  ADS  Google Scholar 

  21. Cammarota, C. & Cavagna, A. A novel method for evaluating the critical nucleus and the surface tension in systems with first order phase transition. J. Chem. Phys. 127, 214703 (2007).

    Article  ADS  Google Scholar 

  22. Franz, S. First steps of a nucleation theory in disordered systems. J. Stat. Mech. 2005, P04001 (2005).

    Google Scholar 

  23. Cavagna, A., Grigera, T. S. & Verrocchio, P. Mosaic multistate scenario versus one-state description of supercooled liquids. Phys. Rev. Lett. 98, 187801 (2007).

    Article  ADS  Google Scholar 

  24. Bernu, B., Hansen, J. P., Hiwatari, Y. & Pastore, G. Soft-sphere model for the glass transition in binary alloys: Pair structure and self-diffusion. Phys. Rev. A 36, 4891–4903 (1987).

    Article  ADS  Google Scholar 

  25. Roux, J.-N., Barrat, J.-L. & Hansen, J.-P. Dynamical diagnostics for the glass transition in soft-sphere alloys. J. Phys. Condens. Matter 1, 7171–7186 (1989).

    Article  ADS  Google Scholar 

  26. Mézard, M. & Montanari, A. Reconstruction on trees and spin glass transition. J. Stat. Phys. 124, 1317–1350 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  27. Franz, S. & Montanari, A. Analytic determination of dynamical and mosaic length scales in a Kac glass model. J. Phys. A 40, F251–F257 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  28. Franz, S., Parisi, G. & Ricci-Tersenghi, F. Mosaic length and finite interaction-range effects in a one dimensional random energy model. Preprint at <http://arxiv.org/abs/0711.4780v2> (2007).

  29. Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).

    Article  ADS  Google Scholar 

  30. Stevenson, J. D., Schmalian, J. & Wolynes, P. G. The shapes of cooperatively rearranging regions in glass-forming liquids. Nature Phys. 2, 268–274 (2006).

    Article  ADS  Google Scholar 

  31. Moore, M. A. & Yeo, J. Thermodynamic glass transition in finite dimensions. Phys. Rev. Lett. 96, 095701 (2006).

    Article  ADS  Google Scholar 

  32. Grigera, T. S. & Parisi, G. Fast Monte Carlo algorithm for supercooled soft spheres. Phys. Rev. E 63, 045102 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Cammarota, L. A. Fernandez, G. Gradenigo, I. Giardina, A. Lefèvre, V. Martín-Mayor, A. Montanari, G. Parisi, D. Reichman, M. Tarzia and F. Zamponi for useful discussions. G.B. and J.-P.B. are supported by ANR Grant DYNHET. T.S.G. thanks ECT* and Dipartimento di Fisica, Universitá di Trento for hospitality and partial support and acknowledges partial support from CONICET and ANPCyT (Argentina) and ICTP (Trieste, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Grigera.

Supplementary information

Supplementary Information

Supplementary Information (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biroli, G., Bouchaud, JP., Cavagna, A. et al. Thermodynamic signature of growing amorphous order in glass-forming liquids. Nature Phys 4, 771–775 (2008). https://doi.org/10.1038/nphys1050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing