Abstract
One of the most striking quantum effects in an interacting Bose gas at low temperature is superfluidity. First observed in liquid 4He, this phenomenon has been intensively studied in a variety of systems for its remarkable features such as the persistence of superflows and the proliferation of quantized vortices1. The achievement of Bose–Einstein condensation in dilute atomic gases2 provided the opportunity to observe and study superfluidity in an extremely clean and well-controlled environment. In the solid state, Bose–Einstein condensation of exciton polaritons has been reported recently3,4,5,6. Polaritons are strongly interacting light–matter quasiparticles that occur naturally in semiconductor microcavities in the strong-coupling regime and constitute an interesting example of composite bosons. Here, we report the observation of spontaneous formation of pinned quantized vortices in the Bose-condensed phase of a polariton fluid. Theoretical insight into the possible origin of such vortices is presented in terms of a generalized Gross–Pitaevskii equation. Whereas the observation of quantized vortices is, in itself, not sufficient for establishing the superfluid nature of the non-equilibrium polariton condensate, it suggests parallels between our system and conventional superfluids.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Donnelly, R. J. Quantized Vortices in Helium II (Cambridge Univ. Press, Cambridge, 1991).
Pitaevskii, L. P. & Stringari, S. Bose–Einstein Condensation (Clarendon, Oxford, 2003).
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).
Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).
Balili, R. et al. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).
Bajoni, D. et al. Polariton laser using single micropillar GaAs–GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008).
Fetter, A. L. & Svidzinsky, A. A. Vortices in trapped dilute Bose–Einstein condensate. J. Phys. Condens. Matter 13, R135–R194 (2001).
Matthews, M. R. et al. Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 2498–2501 (1999).
Madison, K. W. et al. Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000).
Inouye, S. et al. Observation of vortex phase singularities in Bose–Einstein condensates. Phys. Rev. Lett. 87, 080402 (2001).
Simula, T. P. & Blakie, P. B. Thermal activation of vortex–antivortex pairs in quasi-two-dimensional Bose–Einstein condensates. Phys. Rev. Lett. 96, 020404 (2006).
Giorgetti, L., Carusotto, I. & Castin, Y. Semiclassical field method for the equilibrium Bose gas and application to thermal vortices in two dimensions. Phys. Rev. A 76, 013613 (2007).
Hadzibabic, Z. et al. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006).
Schweikhard, V., Tung, S. & Cornell, E. A. Vortex proliferation in the Berezinskii–Kosterlitz–Thouless regime on a two-dimensional lattice of Bose–Einstein condensates. Phys. Rev. Lett. 99, 030401 (2007).
Minnhagen, P. The two-dimensional Coulomb gas, vortex unbinding, and superfluid–superconducting films. Rev. Mod. Phys. 59, 1001–1066 (1987).
Richard, M. et al. Experimental evidence for nonequilibrium Bose condensation of exciton polaritons. Phys. Rev. B 72, 201301(R) (2005).
Baas, A. et al. Synchronized and desynchronized phases of exciton-polariton condensates in the presence of disorder. Phys. Rev. Lett. 100, 170401 (2008).
Savona, V. et al. Optical properties of microcavity polaritons. Phase Transit. 68, 169–279 (1999).
Scheuer, J. et al. Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities. Science 285, 230–233 (1999).
Chen, Y. F. & Lan, Y. P. Formation of optical vortex lattices in solid-state microchip lasers: Spontaneous transverse mode locking. Phys. Rev. A 64, 063807 (2001).
Vaupel, M. & Weiss, C. O. Circling optical vortices. Phys. Rev. A 51, 4078–4085 (1995).
Bolda, E. L. et al. Detection of vorticity in Bose–Einstein condensed gases by matter-wave interference. Phys. Rev. Lett. 81, 5477–5480 (1998).
Tempere, J. et al. Fringe pattern of interfering Bose–Einstein condensates with a vortex. Solid State Commun. 108, 993–996 (1998).
Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997).
Keeling, J. & Berloff, N. G. Spontaneous rotating vortex lattices in a pumped decaying condensate. Phys. Rev. Lett. 100, 250401 (2007).
Wouters, M., Carusotto, I. & Ciuti, C. Spatial and spectral shape of inhomogeneous non-equilibrium exciton-polariton condensates. Phys. Rev. B 77, 115340 (2008).
Wouters, M. & Carusotto, I. Excitations in a nonequilibrium Bose–Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99, 140402 (2007).
Wouters, M. & Carusotto, I. Excitations and superfluidity in non-equilibrium Bose–Einstein condensates of exciton-polaritons. Preprint at <http://arxiv.org/abs/0707.1446> (2007).
Langbein, W. et al. Microscopic measurement of photon echo formation in groups of individual excitonic transitions. Phys. Rev. Lett. 95, 017403 (2005).
Szymańska, M. H., Keeling, J. & Littlewood, P. B. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96, 230602 (2006).
Acknowledgements
We thank D. Sarchi, V. Savona, B. Pietka, J. Tempere and J. Devreese for fruitful discussions. The work was supported by the Swiss National Research Foundation through ‘NCCR Quantum Photonics’.
Author information
Authors and Affiliations
Corresponding authors
Supplementary information
Supplementary Information
Supplementary Information, Movie Descriptions (PDF 71 kb)
Supplementary Information
Supplementary Movie 1 (MOV 767 kb)
Supplementary Information
Supplementary Movie 2 (MOV 110 kb)
Rights and permissions
About this article
Cite this article
Lagoudakis, K., Wouters, M., Richard, M. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys 4, 706–710 (2008). https://doi.org/10.1038/nphys1051
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1051
This article is cited by
-
Stochastic circular persistent currents of exciton polaritons
Scientific Reports (2024)
-
Strong coupling of hybrid states of light and matter in cavity-coupled quantum dot solids
Scientific Reports (2023)
-
Onset of vortex clustering and inverse energy cascade in dissipative quantum fluids
Nature Photonics (2023)
-
Polarization and nonlinear effects on polariton parametric amplification and oscillation
Applied Physics B (2023)
-
Hyperbolic exciton polaritons in a van der Waals magnet
Nature Communications (2023)