Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantized vortices in an exciton–polariton condensate

Abstract

One of the most striking quantum effects in an interacting Bose gas at low temperature is superfluidity. First observed in liquid 4He, this phenomenon has been intensively studied in a variety of systems for its remarkable features such as the persistence of superflows and the proliferation of quantized vortices1. The achievement of Bose–Einstein condensation in dilute atomic gases2 provided the opportunity to observe and study superfluidity in an extremely clean and well-controlled environment. In the solid state, Bose–Einstein condensation of exciton polaritons has been reported recently3,4,5,6. Polaritons are strongly interacting light–matter quasiparticles that occur naturally in semiconductor microcavities in the strong-coupling regime and constitute an interesting example of composite bosons. Here, we report the observation of spontaneous formation of pinned quantized vortices in the Bose-condensed phase of a polariton fluid. Theoretical insight into the possible origin of such vortices is presented in terms of a generalized Gross–Pitaevskii equation. Whereas the observation of quantized vortices is, in itself, not sufficient for establishing the superfluid nature of the non-equilibrium polariton condensate, it suggests parallels between our system and conventional superfluids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interferogram and extracted phase.
Figure 2: Real-space polariton population at the vortex region.
Figure 3: Phase and density distribution from the mean field theory.

Similar content being viewed by others

References

  1. Donnelly, R. J. Quantized Vortices in Helium II (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  2. Pitaevskii, L. P. & Stringari, S. Bose–Einstein Condensation (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  3. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  4. Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    Article  ADS  Google Scholar 

  5. Balili, R. et al. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  ADS  Google Scholar 

  6. Bajoni, D. et al. Polariton laser using single micropillar GaAs–GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008).

    Article  ADS  Google Scholar 

  7. Fetter, A. L. & Svidzinsky, A. A. Vortices in trapped dilute Bose–Einstein condensate. J. Phys. Condens. Matter 13, R135–R194 (2001).

    Article  ADS  Google Scholar 

  8. Matthews, M. R. et al. Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 2498–2501 (1999).

    Article  ADS  Google Scholar 

  9. Madison, K. W. et al. Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000).

    Article  ADS  Google Scholar 

  10. Inouye, S. et al. Observation of vortex phase singularities in Bose–Einstein condensates. Phys. Rev. Lett. 87, 080402 (2001).

    Article  ADS  Google Scholar 

  11. Simula, T. P. & Blakie, P. B. Thermal activation of vortex–antivortex pairs in quasi-two-dimensional Bose–Einstein condensates. Phys. Rev. Lett. 96, 020404 (2006).

    Article  ADS  Google Scholar 

  12. Giorgetti, L., Carusotto, I. & Castin, Y. Semiclassical field method for the equilibrium Bose gas and application to thermal vortices in two dimensions. Phys. Rev. A 76, 013613 (2007).

    Article  ADS  Google Scholar 

  13. Hadzibabic, Z. et al. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006).

    Article  ADS  Google Scholar 

  14. Schweikhard, V., Tung, S. & Cornell, E. A. Vortex proliferation in the Berezinskii–Kosterlitz–Thouless regime on a two-dimensional lattice of Bose–Einstein condensates. Phys. Rev. Lett. 99, 030401 (2007).

    Article  ADS  Google Scholar 

  15. Minnhagen, P. The two-dimensional Coulomb gas, vortex unbinding, and superfluid–superconducting films. Rev. Mod. Phys. 59, 1001–1066 (1987).

    Article  ADS  Google Scholar 

  16. Richard, M. et al. Experimental evidence for nonequilibrium Bose condensation of exciton polaritons. Phys. Rev. B 72, 201301(R) (2005).

    Article  ADS  Google Scholar 

  17. Baas, A. et al. Synchronized and desynchronized phases of exciton-polariton condensates in the presence of disorder. Phys. Rev. Lett. 100, 170401 (2008).

    Article  ADS  Google Scholar 

  18. Savona, V. et al. Optical properties of microcavity polaritons. Phase Transit. 68, 169–279 (1999).

    Article  Google Scholar 

  19. Scheuer, J. et al. Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities. Science 285, 230–233 (1999).

    Article  Google Scholar 

  20. Chen, Y. F. & Lan, Y. P. Formation of optical vortex lattices in solid-state microchip lasers: Spontaneous transverse mode locking. Phys. Rev. A 64, 063807 (2001).

    Article  ADS  Google Scholar 

  21. Vaupel, M. & Weiss, C. O. Circling optical vortices. Phys. Rev. A 51, 4078–4085 (1995).

    Article  ADS  Google Scholar 

  22. Bolda, E. L. et al. Detection of vorticity in Bose–Einstein condensed gases by matter-wave interference. Phys. Rev. Lett. 81, 5477–5480 (1998).

    Article  ADS  Google Scholar 

  23. Tempere, J. et al. Fringe pattern of interfering Bose–Einstein condensates with a vortex. Solid State Commun. 108, 993–996 (1998).

    Article  ADS  Google Scholar 

  24. Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997).

    Article  Google Scholar 

  25. Keeling, J. & Berloff, N. G. Spontaneous rotating vortex lattices in a pumped decaying condensate. Phys. Rev. Lett. 100, 250401 (2007).

    Article  Google Scholar 

  26. Wouters, M., Carusotto, I. & Ciuti, C. Spatial and spectral shape of inhomogeneous non-equilibrium exciton-polariton condensates. Phys. Rev. B 77, 115340 (2008).

    Article  ADS  Google Scholar 

  27. Wouters, M. & Carusotto, I. Excitations in a nonequilibrium Bose–Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99, 140402 (2007).

    Article  ADS  Google Scholar 

  28. Wouters, M. & Carusotto, I. Excitations and superfluidity in non-equilibrium Bose–Einstein condensates of exciton-polaritons. Preprint at <http://arxiv.org/abs/0707.1446> (2007).

  29. Langbein, W. et al. Microscopic measurement of photon echo formation in groups of individual excitonic transitions. Phys. Rev. Lett. 95, 017403 (2005).

    Article  ADS  Google Scholar 

  30. Szymańska, M. H., Keeling, J. & Littlewood, P. B. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96, 230602 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Sarchi, V. Savona, B. Pietka, J. Tempere and J. Devreese for fruitful discussions. The work was supported by the Swiss National Research Foundation through ‘NCCR Quantum Photonics’.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. G. Lagoudakis or M. Wouters.

Supplementary information

Supplementary Information

Supplementary Information, Movie Descriptions (PDF 71 kb)

Supplementary Information

Supplementary Movie 1 (MOV 767 kb)

Supplementary Information

Supplementary Movie 2 (MOV 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagoudakis, K., Wouters, M., Richard, M. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys 4, 706–710 (2008). https://doi.org/10.1038/nphys1051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing