Abstract
The rapid rise of spintronics and quantum information science has led to a strong interest in developing the ability to coherently manipulate electron spins1. Electron spin resonance2 is a powerful technique for manipulating spins that is commonly achieved by applying an oscillating magnetic field. However, the technique has proven very challenging when addressing individual spins3,4,5. In contrast, by mixing the spin and charge degrees of freedom in a controlled way through engineered non-uniform magnetic fields, electron spin can be manipulated electrically without the need of high-frequency magnetic fields6,7. Here we report experiments in which electrically driven addressable spin rotations on two individual electrons were realized by integrating a micrometre-size ferromagnet into a double-quantum-dot device. We find that it is the stray magnetic field of the micromagnet that enables the electrical control and spin selectivity. The results suggest that our approach can be tailored to multidot architecture and therefore could open an avenue towards manipulating electron spins electrically in a scalable way.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Awschalom, D., Loss, D. & Samarth, N. Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).
Poole, C. Electron Spin Resonance 2nd edn (Wiley, New York, 1993).
Xiao, M., Martin, I., Yablonovitch, E. & Jiang, H. W. Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor. Nature 430, 435–439 (2004).
Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).
Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).
Tokura, Y., Van der Wiel, W. G., Obata, T. & Tarucha, S. Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett. 96, 047202 (2006).
Pioro-Ladrière, M., Tokura, Y., Obata, T., Kubo, T. & Tarucha, S. Micromagnets for coherent control of spin-charge qubit in lateral quantum dots. Appl. Phys. Lett. 90, 024105 (2007).
Kouwenhoven, L. P. & Marcus, C. Quantum dots. Phys. World 11, 35–39 (June 1998).
Jacak, L., Hawrylak, P. & Wojs, A. Quantum Dots (Springer, Berlin, 1998).
Tarucha, S., Austing, D. G., Honda, T., van der Hage, R. J. & Kouwenhoven, L. P. Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett. 77, 3613–3616 (1996).
Ciorga, M. et al. Addition sprectrum of a lateral dot from Coulomb and spin-blockade spectroscopy. Phys. Rev. B 61, R16315 (2000).
Obata, T. et al. Microwave band on-chip coil technique for single electron spin resonance in a quantum dot. Rev. Sci. Instrum. 78, 104704 (2007).
Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vendersypen, L. M. K. Coherent control of a single spin with electric fields. Science 318, 1430–1433 (2007).
Meir, L. et al. Measurement of Rashba and Dresselhaus spin–orbit magnetic fields. Nature Phys. 3, 650–654 (2007).
Laird, E. A. et al. Hyperfine-mediated gate-driven electron spin resonance. Phys. Rev. Lett. 99, 246601 (2007).
Kato, Y. et al. Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science 299, 1201–1204 (2003).
Gerlach, W. & Stern, O. Der experimentelle nachweiss der richtungsquantelung im magnetfeld. Z. Phys. 9, 349–355 (1922).
Hüttel, A. K., Ludwig, S., Lorenz, H., Eberl, K. & Kotthaus, J. P. Direct control of the tunnel splitting in a one-electron double quantum dot. Phys. Rev. B 72, 081310(R) (2005).
Loss, D. & DiVicenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).
Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).
van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2003).
Koppens, F. H. L. et al. Detection of single electron spin resonance in a double quantum dot. J. Appl. Phys. 101, 081706 (2007).
Coish, W. A & Loss, D. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004).
Golovach, V. N., Borhani, M. & Loss, D. Electric-dipole-induced spin resonance in quantum dots. Phys. Rev. B 74, 165319 (2006).
Ciorga, M. et al. Collapse of the spin-singlet phase in quantum dots. Phys. Rev. Lett. 88, 256804 (2002).
Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).
Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).
Hatano, T., Stopa, M. & Tarucha, S. Single-electron delocalization in hybrid vertical–lateral double quantum dots. Science 309, 268–271 (2005).
Acknowledgements
We thank F. H. L. Koppens and C. Buizert for discussions, I. Mahboob for comments and Y. Sekine for advice. S.T. acknowledges financial support from Grants-in-Aid for Scientific Research S (No 19104007) and B (No 18340081).
Author information
Authors and Affiliations
Contributions
M.P.-L. designed the experiment, fabricated the device and wrote the paper. T.O. ensured proper operation of microwaves. M.P.-L. and T.O. carried out the bulk of the experimental work and analysis. Y.T. conceived the theory. Y.-S.S. participated in experiments. T.K. participated in the theoretical work. K.Y. assisted with device processing. T.T. assisted with micromagnet technology. S.T. planned the project. All authors discussed the results and commented on the manuscript.
Corresponding author
Supplementary information
Supplementary Information
Supplementary Notes and Supplementary Figures 1–3 (PDF 625 kb)
Rights and permissions
About this article
Cite this article
Pioro-Ladrière, M., Obata, T., Tokura, Y. et al. Electrically driven single-electron spin resonance in a slanting Zeeman field. Nature Phys 4, 776–779 (2008). https://doi.org/10.1038/nphys1053
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1053
This article is cited by
-
Field programmable spin arrays for scalable quantum repeaters
Nature Communications (2023)
-
Wigner-molecularization-enabled dynamic nuclear polarization
Nature Communications (2023)
-
Electrical manipulation of a single electron spin in CMOS using a micromagnet and spin-valley coupling
npj Quantum Information (2023)
-
On-demand electrical control of spin qubits
Nature Nanotechnology (2023)
-
Electric field-tuneable crossing of hole Zeeman splitting and orbital gaps in compressively strained germanium semiconductor on silicon
Communications Materials (2023)