Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrically driven single-electron spin resonance in a slanting Zeeman field

Abstract

The rapid rise of spintronics and quantum information science has led to a strong interest in developing the ability to coherently manipulate electron spins1. Electron spin resonance2 is a powerful technique for manipulating spins that is commonly achieved by applying an oscillating magnetic field. However, the technique has proven very challenging when addressing individual spins3,4,5. In contrast, by mixing the spin and charge degrees of freedom in a controlled way through engineered non-uniform magnetic fields, electron spin can be manipulated electrically without the need of high-frequency magnetic fields6,7. Here we report experiments in which electrically driven addressable spin rotations on two individual electrons were realized by integrating a micrometre-size ferromagnet into a double-quantum-dot device. We find that it is the stray magnetic field of the micromagnet that enables the electrical control and spin selectivity. The results suggest that our approach can be tailored to multidot architecture and therefore could open an avenue towards manipulating electron spins electrically in a scalable way.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device and read-out scheme.
Figure 2: Electrically driven single-spin resonance.
Figure 3: Dependency of the Rabi frequency on external field.

Similar content being viewed by others

References

  1. Awschalom, D., Loss, D. & Samarth, N. Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).

    Book  Google Scholar 

  2. Poole, C. Electron Spin Resonance 2nd edn (Wiley, New York, 1993).

    Google Scholar 

  3. Xiao, M., Martin, I., Yablonovitch, E. & Jiang, H. W. Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor. Nature 430, 435–439 (2004).

    Article  ADS  Google Scholar 

  4. Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    Article  ADS  Google Scholar 

  5. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  ADS  Google Scholar 

  6. Tokura, Y., Van der Wiel, W. G., Obata, T. & Tarucha, S. Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett. 96, 047202 (2006).

    Article  ADS  Google Scholar 

  7. Pioro-Ladrière, M., Tokura, Y., Obata, T., Kubo, T. & Tarucha, S. Micromagnets for coherent control of spin-charge qubit in lateral quantum dots. Appl. Phys. Lett. 90, 024105 (2007).

    Article  ADS  Google Scholar 

  8. Kouwenhoven, L. P. & Marcus, C. Quantum dots. Phys. World 11, 35–39 (June 1998).

    Article  Google Scholar 

  9. Jacak, L., Hawrylak, P. & Wojs, A. Quantum Dots (Springer, Berlin, 1998).

    Book  Google Scholar 

  10. Tarucha, S., Austing, D. G., Honda, T., van der Hage, R. J. & Kouwenhoven, L. P. Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett. 77, 3613–3616 (1996).

    Article  ADS  Google Scholar 

  11. Ciorga, M. et al. Addition sprectrum of a lateral dot from Coulomb and spin-blockade spectroscopy. Phys. Rev. B 61, R16315 (2000).

    Article  ADS  Google Scholar 

  12. Obata, T. et al. Microwave band on-chip coil technique for single electron spin resonance in a quantum dot. Rev. Sci. Instrum. 78, 104704 (2007).

    Article  ADS  Google Scholar 

  13. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vendersypen, L. M. K. Coherent control of a single spin with electric fields. Science 318, 1430–1433 (2007).

    Article  ADS  Google Scholar 

  14. Meir, L. et al. Measurement of Rashba and Dresselhaus spin–orbit magnetic fields. Nature Phys. 3, 650–654 (2007).

    Article  ADS  Google Scholar 

  15. Laird, E. A. et al. Hyperfine-mediated gate-driven electron spin resonance. Phys. Rev. Lett. 99, 246601 (2007).

    Article  ADS  Google Scholar 

  16. Kato, Y. et al. Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science 299, 1201–1204 (2003).

    Article  ADS  Google Scholar 

  17. Gerlach, W. & Stern, O. Der experimentelle nachweiss der richtungsquantelung im magnetfeld. Z. Phys. 9, 349–355 (1922).

    ADS  Google Scholar 

  18. Hüttel, A. K., Ludwig, S., Lorenz, H., Eberl, K. & Kotthaus, J. P. Direct control of the tunnel splitting in a one-electron double quantum dot. Phys. Rev. B 72, 081310(R) (2005).

    Article  ADS  Google Scholar 

  19. Loss, D. & DiVicenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  Google Scholar 

  20. Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    Article  ADS  Google Scholar 

  21. van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2003).

    Article  ADS  Google Scholar 

  22. Koppens, F. H. L. et al. Detection of single electron spin resonance in a double quantum dot. J. Appl. Phys. 101, 081706 (2007).

    Article  ADS  Google Scholar 

  23. Coish, W. A & Loss, D. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004).

    Article  ADS  Google Scholar 

  24. Golovach, V. N., Borhani, M. & Loss, D. Electric-dipole-induced spin resonance in quantum dots. Phys. Rev. B 74, 165319 (2006).

    Article  ADS  Google Scholar 

  25. Ciorga, M. et al. Collapse of the spin-singlet phase in quantum dots. Phys. Rev. Lett. 88, 256804 (2002).

    Article  ADS  Google Scholar 

  26. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  ADS  Google Scholar 

  27. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

  28. Hatano, T., Stopa, M. & Tarucha, S. Single-electron delocalization in hybrid vertical–lateral double quantum dots. Science 309, 268–271 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. H. L. Koppens and C. Buizert for discussions, I. Mahboob for comments and Y. Sekine for advice. S.T. acknowledges financial support from Grants-in-Aid for Scientific Research S (No 19104007) and B (No 18340081).

Author information

Authors and Affiliations

Authors

Contributions

M.P.-L. designed the experiment, fabricated the device and wrote the paper. T.O. ensured proper operation of microwaves. M.P.-L. and T.O. carried out the bulk of the experimental work and analysis. Y.T. conceived the theory. Y.-S.S. participated in experiments. T.K. participated in the theoretical work. K.Y. assisted with device processing. T.T. assisted with micromagnet technology. S.T. planned the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to M. Pioro-Ladrière.

Supplementary information

Supplementary Information

Supplementary Notes and Supplementary Figures 1–3 (PDF 625 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pioro-Ladrière, M., Obata, T., Tokura, Y. et al. Electrically driven single-electron spin resonance in a slanting Zeeman field. Nature Phys 4, 776–779 (2008). https://doi.org/10.1038/nphys1053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing