Abstract
Coherent population trapping (CPT) refers to the steady-state trapping of population in a coherent superposition of two ground states that are coupled by coherent optical fields to an intermediate state in a three-level atomic system1. Recently, CPT has been observed in an ensemble of donor-bound spins in GaAs (ref. 2) and in single nitrogen-vacancy centres in diamond3 by using a fluorescence technique. Here, we report the demonstration of CPT of an electron spin in a single quantum dot. The observation demonstrates both the CPT of an electron spin and the successful generation of Raman coherence between the two spin ground states of the electron4,5,6. This technique can be used to initialize, at about a gigahertz rate, an electron spin state in an arbitrary superposition by varying the ratio of the Rabi frequencies between the driving and probe fields. The results show the potential importance of charged quantum dots for a solid-state approach to the implementation of electromagnetically induced transparency7,8, slow light9, quantum information storage10 and quantum repeaters11,12.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Gray, H. R., Whitley, R. M. & Stroud, C. R. Jr. Coherent trapping of atomic populations. Opt. Lett. 3, 218–220 (1978).
Fu, K.-M. C., Santori, C., Stanley, C., Holland, M. C. & Yamamoto, Y. Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor. Phys. Rev. Lett. 95, 187405 (2005).
Santori, C. et al. Coherent population trapping of single spins in diamond under optical excitation. Phys. Rev. Lett. 97, 247401 (2006).
Dutt, M.V. G. et al. Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots. Phys. Rev. Lett. 94, 227403 (2005).
Greilich, A. et al. Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006).
Mikkelsen, M. H., Berezovsky, J., Stoltz, G. N., Coldren, L. A. & Awschalom, D. D. Optically detected coherent spin dynamics of a single electron in a quantum dot. Nature Phys. 3, 770–773 (2007).
Boller, K. J., Imamoglu, A. & Harris, S. E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991).
Harris, S. E. Electromagnetically induced transparency. Phys. Today 50 (7), 36–42 (1997).
Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).
Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).
Briegel, H. J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).
DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).
Xu, X. et al. Fast spin state initialization in a singly charged InAs–GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007).
Atature, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).
Ware, M. E. et al. Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot. Phys. Rev. Lett. 95, 177403 (2005).
Alen, B. et al. Stark-shift modulation absorption spectroscopy of single quantum dots. Appl. Phys. Lett. 83, 2235–2237 (2003).
Smith, J. M. et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett. 94, 197402 (2005).
Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955).
Kamada, H., Gotoh, H., Temmyo, J., Takagahara, T. & Ando, H. Exciton Rabi oscillation in a single quantum dot. Phys. Rev. Lett. 87, 246401 (2001).
Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007).
Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).
Coish, W. A. & Loss, D. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004).
Johnson, A. C. et al. Triplet–singlet spin relaxation via nuclei in a double quantum dot. Nature 435, 925–928 (2005).
Bracker, A. S. et al. Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots. Phys. Rev. Lett. 94, 047402 (2005).
Wang, Y., Liu, R. B. & Sham, L. J. Restoring coherence lost to a slow interacting mesoscopic spin bath. Phys. Rev. Lett. 98, 077602 (2007).
Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).
Acknowledgements
This work is supported by US ARO, DARPA, AFOSR, ONR, NSA/LPS and FOCUS-NSF.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary Notes and Supplementary Figure 1 (PDF 108 kb)
Rights and permissions
About this article
Cite this article
Xu, X., Sun, B., Berman, P. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys 4, 692–695 (2008). https://doi.org/10.1038/nphys1054
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1054
This article is cited by
-
Theoretical study of phase-controlled optical absorption, gain and group index in double-quantum-dot molecule
Journal of Optics (2023)
-
Tailoring solid-state single-photon sources with stimulated emissions
Nature Nanotechnology (2022)
-
Suppression of nuclear spin fluctuations in an InGaAs quantum dot ensemble by GHz-pulsed optical excitation
npj Quantum Information (2021)
-
High resolution two-dimensional atomic microscopy via superposition of three probe coherences and three standing wave fields
Optical and Quantum Electronics (2021)
-
Vanishing fine structure splitting in highly asymmetric InAs/InP quantum dots without wetting layer
Scientific Reports (2020)