Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coherent population trapping of an electron spin in a single negatively charged quantum dot

Abstract

Coherent population trapping (CPT) refers to the steady-state trapping of population in a coherent superposition of two ground states that are coupled by coherent optical fields to an intermediate state in a three-level atomic system1. Recently, CPT has been observed in an ensemble of donor-bound spins in GaAs (ref. 2) and in single nitrogen-vacancy centres in diamond3 by using a fluorescence technique. Here, we report the demonstration of CPT of an electron spin in a single quantum dot. The observation demonstrates both the CPT of an electron spin and the successful generation of Raman coherence between the two spin ground states of the electron4,5,6. This technique can be used to initialize, at about a gigahertz rate, an electron spin state in an arbitrary superposition by varying the ratio of the Rabi frequencies between the driving and probe fields. The results show the potential importance of charged quantum dots for a solid-state approach to the implementation of electromagnetically induced transparency7,8, slow light9, quantum information storage10 and quantum repeaters11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The trion model and its characterization.
Figure 2: The experimental evidence of the CPT of an electron spin.
Figure 3: The interaction scheme of the generation of CPT.
Figure 4: The analysis of the CPT effect.

Similar content being viewed by others

References

  1. Gray, H. R., Whitley, R. M. & Stroud, C. R. Jr. Coherent trapping of atomic populations. Opt. Lett. 3, 218–220 (1978).

    Article  ADS  Google Scholar 

  2. Fu, K.-M. C., Santori, C., Stanley, C., Holland, M. C. & Yamamoto, Y. Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor. Phys. Rev. Lett. 95, 187405 (2005).

    Article  ADS  Google Scholar 

  3. Santori, C. et al. Coherent population trapping of single spins in diamond under optical excitation. Phys. Rev. Lett. 97, 247401 (2006).

    Article  ADS  Google Scholar 

  4. Dutt, M.V. G. et al. Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots. Phys. Rev. Lett. 94, 227403 (2005).

    Article  ADS  Google Scholar 

  5. Greilich, A. et al. Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006).

    Article  ADS  Google Scholar 

  6. Mikkelsen, M. H., Berezovsky, J., Stoltz, G. N., Coldren, L. A. & Awschalom, D. D. Optically detected coherent spin dynamics of a single electron in a quantum dot. Nature Phys. 3, 770–773 (2007).

    Article  ADS  Google Scholar 

  7. Boller, K. J., Imamoglu, A. & Harris, S. E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991).

    Article  ADS  Google Scholar 

  8. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50 (7), 36–42 (1997).

    Article  Google Scholar 

  9. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  Google Scholar 

  10. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  Google Scholar 

  11. Briegel, H. J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  12. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  13. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  Google Scholar 

  14. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article  Google Scholar 

  15. Xu, X. et al. Fast spin state initialization in a singly charged InAs–GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007).

    Article  ADS  Google Scholar 

  16. Atature, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    Article  ADS  Google Scholar 

  17. Ware, M. E. et al. Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot. Phys. Rev. Lett. 95, 177403 (2005).

    Article  ADS  Google Scholar 

  18. Alen, B. et al. Stark-shift modulation absorption spectroscopy of single quantum dots. Appl. Phys. Lett. 83, 2235–2237 (2003).

    Article  ADS  Google Scholar 

  19. Smith, J. M. et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett. 94, 197402 (2005).

    Article  ADS  Google Scholar 

  20. Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955).

    Article  ADS  Google Scholar 

  21. Kamada, H., Gotoh, H., Temmyo, J., Takagahara, T. & Ando, H. Exciton Rabi oscillation in a single quantum dot. Phys. Rev. Lett. 87, 246401 (2001).

    Article  ADS  Google Scholar 

  22. Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007).

    Article  ADS  Google Scholar 

  23. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  ADS  Google Scholar 

  24. Coish, W. A. & Loss, D. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004).

    Article  ADS  Google Scholar 

  25. Johnson, A. C. et al. Triplet–singlet spin relaxation via nuclei in a double quantum dot. Nature 435, 925–928 (2005).

    Article  ADS  Google Scholar 

  26. Bracker, A. S. et al. Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots. Phys. Rev. Lett. 94, 047402 (2005).

    Article  ADS  Google Scholar 

  27. Wang, Y., Liu, R. B. & Sham, L. J. Restoring coherence lost to a slow interacting mesoscopic spin bath. Phys. Rev. Lett. 98, 077602 (2007).

    Article  ADS  Google Scholar 

  28. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by US ARO, DARPA, AFOSR, ONR, NSA/LPS and FOCUS-NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan G. Steel.

Supplementary information

Supplementary Information

Supplementary Notes and Supplementary Figure 1 (PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Sun, B., Berman, P. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys 4, 692–695 (2008). https://doi.org/10.1038/nphys1054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1054

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing