Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of magnetic anisotropy in the Kondo effect

Abstract

In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host1. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin2. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment’s energy on the orientation of the spin relative to its surrounding atomic environment3,4. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature dependence of the Kondo resonance of a Co atom.
Figure 2: Anisotropic field dependence of the Kondo resonance.
Figure 3: Energy eigenlevels for different field directions.
Figure 4: Kondo effect of a Ti atom.

Similar content being viewed by others

References

  1. Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  2. Owen, J., Browne, M. E., Arp, V. & Kip, A. F. Electron-spin resonance and magnetic-susceptibility measurements on dilute alloys of Mn in Cu, Ag and Mg. J. Phys. Chem. Solids 2, 85 (1957).

    Article  ADS  Google Scholar 

  3. Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003).

    Article  ADS  Google Scholar 

  4. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, Oxford, 2006).

    Book  Google Scholar 

  5. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

    Article  ADS  Google Scholar 

  6. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article  ADS  Google Scholar 

  7. Li, J., Schneider, W.-D., Berndt, R. & Delley, B. Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893–2896 (1998).

    Article  ADS  Google Scholar 

  8. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  ADS  Google Scholar 

  9. Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    Article  ADS  Google Scholar 

  10. Wahl, P. et al. Kondo temperature of magnetic impurities at surfaces. Phys. Rev. Lett. 93, 176603 (2004).

    Article  ADS  Google Scholar 

  11. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    Article  ADS  Google Scholar 

  12. Leibsle, F. M., Dhesi, S. S., Barrett, S. D. & Robinson, A. W. STM observations of Cu(100)-c(2×2)N surfaces: Evidence for attractive interactions and an incommensurate c(2×2) structure. Surf. Sci. 317, 309–320 (1994).

    Article  ADS  Google Scholar 

  13. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

    Article  ADS  Google Scholar 

  14. Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540–544 (1998).

    Article  ADS  Google Scholar 

  15. Zhao, A. et al. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 309, 1542–1544 (2005).

    Article  ADS  Google Scholar 

  16. Wahl, P. et al. Kondo effect of molecular complexes at surfaces: Ligand control of the local spin coupling. Phys. Rev. Lett. 95, 166601 (2005).

    Article  ADS  Google Scholar 

  17. Nagaoka, K., Jamneala, T., Grobis, M. & Crommie, M. F. Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 88, 077205 (2002).

    Article  ADS  Google Scholar 

  18. Shen, L. Y. L. & Rowell, J. M. Zero-bias tunneling anomalies—temperature, voltage, and magnetic field dependence. Phys. Rev. 165, 566–577 (1968).

    Article  ADS  Google Scholar 

  19. Kogan, A. et al. Measurements of Kondo and spin splitting in single-electron transistors. Phys. Rev. Lett. 93, 166602 (2004).

    Article  ADS  Google Scholar 

  20. Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007).

    Article  ADS  Google Scholar 

  21. Choi, T., Ruggiero, C. D. & Gupta, J. A. Incommensurability and atomic structure of c(2×2)N/Cu(100): A scanning tunneling microscopy study. Phys. Rev. B 78, 035430 (2008).

    Article  ADS  Google Scholar 

  22. Appelbaum, J. A. Exchange model of zero-bias tunneling anomalies. Phys. Rev. 154, 633–643 (1967).

    Article  ADS  Google Scholar 

  23. Costi, T. A. Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys. Phys. Rev. Lett. 85, 1504–1507 (2000).

    Article  ADS  Google Scholar 

  24. Moore, J. E. & Wen, X.-G. Anomalous magnetic splitting of the Kondo resonance. Phys. Rev. Lett. 85, 1722–1725 (2000).

    Article  ADS  Google Scholar 

  25. Lorente, N. Mode excitation induced by the scanning tunnelling microscope. Appl. Phys. A 78, 799–806 (2004).

    Article  ADS  Google Scholar 

  26. Grobis, M., Rau, I. G., Potok, R. M. & Goldhaber-Gordon, D. in Handbook of Magnetism and Advanced Magnetic Materials (eds Kronmüller, H. & Parkin, S.) (Wiley, New York, 2007).

    Google Scholar 

  27. Schlottmann, P. Effects of crystal fields on the ground state of a Ce atom. Phys. Rev. B 30, 1454–1457 (1984).

    Article  ADS  Google Scholar 

  28. Újsághy, O., Zawadowski, A. & Gyorffy, B. L. Spin–orbit-induced magnetic anisotropy for impurities in metallic samples of reduced dimensions: Finite size dependence in the Kondo effect. Phys. Rev. Lett. 76, 2378–2381 (1996).

    Article  ADS  Google Scholar 

  29. Romeike, C., Wegewijs, M. R., Hofstetter, W. & Schoeller, H. Quantum-tunneling-induced Kondo effect in single molecular magnets. Phys. Rev. Lett. 96, 196601 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. F. Crommie, D. M. Eigler, A. C. Hewson, B. A. Jones, J. E. Moore and J. M. van Ruitenbeek for discussions and B. J. Melior for technical assistance. A.F.O. acknowledges support from the Leiden University Fund; M.T. from the Swiss National Science Foundation; K.v.B. from the German Science Foundation (DFG Forschungsstipendium); S.L. from the Alexander von Humboldt Foundation; C.F.H. from the Engineering and Physical Sciences Research Council (EPSRC) Science and Innovation Award and M.T., C.P.L. and A.J.H. from the Office of Naval Research. H.B. acknowledges EPFL for supporting his sabbatical stay with IBM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas J. Heinrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otte, A., Ternes, M., von Bergmann, K. et al. The role of magnetic anisotropy in the Kondo effect. Nature Phys 4, 847–850 (2008). https://doi.org/10.1038/nphys1072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing