Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong interaction between light and a single trapped atom without the need for a cavity

Abstract

Many quantum information processing protocols require efficient transfer of quantum information from a flying photon to a stationary quantum system1,2,3. To transfer information, a photon must first be absorbed by the quantum system. This can be achieved, with a probability close to unity, by an atom residing in a high-finesse cavity1. However, it is unclear whether a photon can be absorbed effectively by an atom in a free space. Here, we report on an observation of substantial extinction of a light beam by a single 87Rb atom through focusing light to a small spot with a single lens. The measured extinction values can be directly compared to the predictions of existing free-space photon–atom coupling models4,5,6. Our result should open a new perspective on processing quantum information carried by light using atoms, in particular for experiments that require strong absorption of single photons by an atom in free space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up for measuring the extinction of a light beam by a single atom.
Figure 2: Evidence for single-atom occupancy of our trap.
Figure 3: Energy levels and coupling light fields for a 87Rb atom trapped in a FORT with a circularly polarized trap field.
Figure 4: Transmission of the probe beam versus detuning from the natural resonant frequency of the |g〉 to |e〉 transition.

Similar content being viewed by others

References

  1. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  2. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  3. Blinov, B. B., Moehring, D. L., Duan, L.-M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).

    Article  ADS  Google Scholar 

  4. Cohen-Tannoudji, C., Grynberg, G. & Dupont-Roc, J. Atom-Photon Interactions: Basic Processes and Application (Wiley, 1992).

    Google Scholar 

  5. van Enk, S. J. Atoms, dipole waves, and strongly focused light beams. Phys. Rev. A 69, 043813 (2004).

    Article  ADS  Google Scholar 

  6. Sondermann, M. et al. Design of a mode converter for efficient light-atom coupling in free space. Appl. Phys. B 89, 489–492 (2007).

    Article  ADS  Google Scholar 

  7. Matsukevich, D. N., Maunz, P., Moehring, D. L., Olmschenk, S. & Monroe, C. Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008).

    Article  ADS  Google Scholar 

  8. Volz, J. et al. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006).

    Article  ADS  Google Scholar 

  9. Savage, C. M., Braunstein, S. L. & Walls, D. F. Macroscopic quantum superpositions by means of single-atom dispersion. Opt. Lett. 15, 628–630 (1990).

    Article  ADS  Google Scholar 

  10. Meschede, D., Walther, H. & Müller, G. One-atom maser. Phys. Rev. Lett. 54, 551–554 (1985).

    Article  ADS  Google Scholar 

  11. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  12. Pinkse, P. W. H., Fischer, T., Maunz, P. & Rempe, G. Trapping an atom with single photons. Nature 404, 365–368 (2000).

    Article  ADS  Google Scholar 

  13. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007).

    Article  ADS  Google Scholar 

  14. Gleyzes, S. et al. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007).

    Article  ADS  Google Scholar 

  15. van Enk, S. J. & Kimble, H. J. Strongly focused light beams interacting with single atoms in free space. Phys. Rev. A 63, 023809 (2001).

    Article  ADS  Google Scholar 

  16. Wineland, D. J., Itano, W. M. & Bergquist, J. C. Absorption spectroscopy at the limit: Detection of a single atom. Opt. Lett. 12, 389–391 (1987).

    Article  ADS  Google Scholar 

  17. Gerhardt, I. et al. Strong extinction of a laser beam by a single molecule. Phys. Rev. Lett. 98, 033601 (2007).

    Article  ADS  Google Scholar 

  18. Vamivakas, A. et al. Strong extinction of a far-field laser beam by a single quantum dot. Nano Lett. 7, 2892–2896 (2007).

    Article  ADS  Google Scholar 

  19. Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nature Phys. 4, 60–66 (2008).

    Article  ADS  Google Scholar 

  20. Schlosser, N., Reymond, G., Protsenko, I. & Grangier, P. Sub-Poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001).

    Article  ADS  Google Scholar 

  21. Schlosser, N., Reymond, G. & Grangier, P. Collisional blockade in microscopic optical dipole traps. Phys. Rev. Lett. 89, 203005 (2002).

    Article  ADS  Google Scholar 

  22. Diedrich, F. & Walther, H. Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58, 203–206 (1987).

    Article  ADS  Google Scholar 

  23. Weber, M., Volz, J., Saucke, K., Kurtsiefer, C. & Weinfurter, H. Analysis of a single-atom dipole trap. Phys. Rev. A 73, 043406 (2006).

    Article  ADS  Google Scholar 

  24. Gomer, V. et al. Decoding the dynamics of a single trapped atom from photon correlations. Appl. Phys. B 67, 689–697 (1998).

    Article  ADS  Google Scholar 

  25. Tey, M. K. et al. Interfacing light and single atoms with a lens. Preprint at <http://arxiv.org/abs/0804.4861> (2008).

Download references

Acknowledgements

We would like to acknowledge helpful discussions with V. Scarani, A. Lamas-Linares and H. Loh. This work was partially supported by the Singapore Ministry of Education under FRC grant R-144-000-174-112. Z.C. acknowledges support from the Agency for Science, Technology and Research, Singapore (A*STAR).

Author information

Authors and Affiliations

Authors

Contributions

Project planning and data analysis: M.K.T., G.M. and C.K.; experimental work: all authors; numerical work on focusing: M.K.T. and F.H.

Corresponding author

Correspondence to Christian Kurtsiefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tey, M., Chen, Z., Aljunid, S. et al. Strong interaction between light and a single trapped atom without the need for a cavity. Nature Phys 4, 924–927 (2008). https://doi.org/10.1038/nphys1096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1096

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing