Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deterministic entanglement swapping with an ion-trap quantum computer

Abstract

Entanglement—once only a subject of disputes about the foundation of quantum mechanics—has today become an essential issue in the emerging field of quantum information processing, promising a number of applications, including secure communication, teleportation and powerful quantum computation. Therefore, a focus of current experimental work in the field of quantum information is the creation and manipulation of entangled quantum systems. Here, we present our results on entangling two qubits in an ion-trap quantum processor not through a direct interaction of the ion qubits but instead through the action of a protocol known as entanglement swapping1. Our ion-trap system enables us to implement all steps of the entanglement swapping protocol in a fully deterministic way. Thus, two ion qubits can be prepared on demand in a well-defined entangled state. This particular feature may facilitate the implementation of quantum repeaters2 or aid in distributing entangled states in ion-trap quantum computers3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram showing the steps of the entanglement swapping protocol.
Figure 2: Result of entanglement swapping without the final conditional rotations.
Figure 3: Result of the fully deterministic entanglement swapping protocol.

Similar content being viewed by others

References

  1. Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. ‘Event-ready-detectors’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    Article  ADS  Google Scholar 

  2. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  3. Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    Article  ADS  Google Scholar 

  4. Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  5. Halder, M. et al. Entangling independent photons by time measurement. Nature Phys. 3, 692–695 (2007).

    Article  ADS  Google Scholar 

  6. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    Article  ADS  Google Scholar 

  7. Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

    Article  ADS  Google Scholar 

  8. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    Article  ADS  Google Scholar 

  9. Reichle, R. et al. Experimental purification of two-atom entanglement. Nature 443, 838–841 (2006).

    Article  ADS  Google Scholar 

  10. Schmidt-Kaler, F. et al. How to realize a universal quantum gate with trapped ions. Appl. Phys. B 77, 789–796 (2003).

    Article  ADS  Google Scholar 

  11. Riebe, M. et al. Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006).

    Article  ADS  Google Scholar 

  12. Roos, C. F. et al. Bell states of atoms with ultralong lifetimes and their tomographic state analysis. Phys. Rev. Lett. 92, 220402 (2004).

    Article  ADS  Google Scholar 

  13. Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).

    Article  ADS  Google Scholar 

  14. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  15. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007).

    Article  ADS  Google Scholar 

  16. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  17. Roos, C. F. et al. Control and measurement of three-qubit entangled states. Science 304, 1478–1480 (2004).

    Article  ADS  Google Scholar 

  18. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by the Austrian Science Fund (FWF), the European Commission (SCALA, CONQUEST networks) and the Institut für Quanteninformation GmbH. This material is based on work supported in part by the U.S. Army Research Office.

Author information

Authors and Affiliations

Corresponding author

Correspondence to M. Riebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riebe, M., Monz, T., Kim, K. et al. Deterministic entanglement swapping with an ion-trap quantum computer. Nature Phys 4, 839–842 (2008). https://doi.org/10.1038/nphys1107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing