Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-Tc superconductor

Abstract

A fundamental question for high-temperature superconductors is the nature of the pseudogap phase, which lies between the Mott insulator at zero doping and the Fermi liquid at high doping p (refs 1, 2). Here we report on the behaviour of charge carriers near the zero-temperature onset of this phase, namely at the critical doping p*, where the pseudogap temperature T* goes to zero, accessed by investigating a material in which superconductivity can be fully suppressed by a steady magnetic field. Just below p*, the normal-state resistivity and Hall coefficient of La1.6−xNd0.4SrxCuO4 are found to rise simultaneously as the temperature drops below T*, suggesting a change in the Fermi surface with a large associated drop in conductivity. At p*, the resistivity shows a linear temperature dependence as the temperature approaches zero, a typical signature of a quantum critical point3. These findings impose new constraints on the mechanisms responsible for inelastic scattering and Fermi-surface transformation in theories of the pseudogap phase1,4,5,6,7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normal-state resistivity.
Figure 2: In-plane and out-of-plane resistivities at low temperature.
Figure 3: Phase diagram.
Figure 4: Normal-state Hall coefficient.

Similar content being viewed by others

References

  1. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  2. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: An experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

    Article  ADS  Google Scholar 

  3. v Löhneysen, H., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    Article  ADS  Google Scholar 

  4. Yang, K.-Y., Rice, T. M. & Zhang, F.-C. Phenomenological theory of the pseudogap state. Phys. Rev. B 73, 174501 (2006).

    Article  ADS  Google Scholar 

  5. Haule, K. & Kotliar, G. Avoided criticality in near-optimally doped high-temperature superconductors. Phys. Rev. B 76, 192503 (2007).

    Google Scholar 

  6. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003).

    Article  ADS  Google Scholar 

  7. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).

    Article  ADS  Google Scholar 

  8. Varma, C. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).

    Article  ADS  Google Scholar 

  9. Ando, Y. et al. Evolution of the Hall coefficient and the peculiar electronic structure of the cuprate superconductors. Phys. Rev. Lett. 92, 197001 (2004).

    Article  ADS  Google Scholar 

  10. Hussey, N. E. et al. Observation of a coherent three-dimensional Fermi surface in a high-transition temperature superconductor. Nature 425, 814–817 (2003).

    Article  ADS  Google Scholar 

  11. Nakamae, S. et al. Electronic ground state of heavily-overdoped non-superconducting La2−xSrxCuO4 . Phys. Rev. B 68, 100502 (2003).

    Article  ADS  Google Scholar 

  12. Mackenzie, A. P. et al. Normal-state magnetotransport in superconducting Tl2Ba2CuO6+y to millikelvin temperatures. Phys. Rev. B 53, 5848–5855 (1996).

    Article  ADS  Google Scholar 

  13. Nakamura, Y. & Uchida, S. Anisotropic transport properties of single-crystal La2−yxNdySrxCuO4: Effect of the structural phase transition. Phys. Rev. B 46, 5841–5844 (1992).

    Article  ADS  Google Scholar 

  14. Ando, Y. et al. Electronic phase diagram of high-Tc cuprate superconductors from a mapping of the in-plane resistivity curvature. Phys. Rev. Lett. 93, 267001 (2004).

    Article  ADS  Google Scholar 

  15. Varma, C. M. et al. Phenomenology of the normal state of Cu–O high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989).

    Article  ADS  Google Scholar 

  16. Tallon, J. L. & Loram, J. W. The doping dependence of T*—what is the real high-Tc phase diagram? Physica C 349, 53–68 (2001).

    Article  ADS  Google Scholar 

  17. Motoyama, E. M. et al. Spin correlations in the electron-doped high-transition-temperature superconductor Nd2−xCexCuO4±δ . Nature 445, 186–189 (2007).

    Article  ADS  Google Scholar 

  18. Fournier, P. et al. Insulator–metal crossover near optimal doping in Pr2−xCexCuO4: anomalous normal-state low-temperature resistivity. Phys. Rev. Lett. 81, 4720–4723 (1998).

    Article  ADS  Google Scholar 

  19. Dagan, Y. et al. Evidence for a quantum phase transition in Pr2−xCexCuO4−δ from transport measurements. Phys. Rev. Lett. 92, 167001 (2004).

    Article  ADS  Google Scholar 

  20. Ichikawa, N. et al. Local magnetic order vs superconductivity in a layered cuprate. Phys. Rev. Lett. 85, 1738–1741 (2000).

    Article  ADS  Google Scholar 

  21. Hunt, A. W. et al. Glassy slowing of stripe modulation in (La,Eu,Nd)2−x(Sr,Ba)xCuO4: A 63Cu and 139La NQR study down to 350 mK. Phys. Rev. B 64, 134525 (2001).

    Article  ADS  Google Scholar 

  22. Niemöller, T. et al. Charge stripes seen with X-rays in La1.45Nd0.4Sr0.15CuO4 . Eur. Phys. J. B 12, 509–513 (1999).

    Article  ADS  Google Scholar 

  23. Fink, J. et al. Charge order in La1.8−xEu0.2SrxCuO4 studied by resonant soft X-ray diffraction. Preprint at <http://arxiv.org/abs/0805.4352> (2008).

  24. Adachi, T., Noji, T. & Koike, Y. Crystal growth, transport properties, and crystal structure of the single-crystal La2−xBaxCuO4 (x=0.11). Phys. Rev. B 64, 144524 (2001).

    Article  ADS  Google Scholar 

  25. Takeshita, N et al. Giant anisotropic pressure effect on superconductivity within the CuO2 plane of La1.64Eu0.2Sr0.16CuO4: Strain control of stripe criticality. J. Phys. Soc. Jpn. 73, 1123–1126 (2004).

    Article  ADS  Google Scholar 

  26. LeBoeuf, D. et al. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature 450, 533–536 (2007).

    Article  ADS  Google Scholar 

  27. Millis, A. J. & Norman, M. R. Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates. Phys. Rev. B 76, 220503 (2007).

    Article  ADS  Google Scholar 

  28. Ossadnik, M., Honerkamp, C., Rice, T. M. & Sigrist, M. Breakdown of Landau theory in overdoped cuprates near the onset of superconductivity. Preprint at <http://arxiv.org/abs/0805.3489> (2008).

  29. Boebinger, G. S. et al. Insulator-to-metal crossover in the normal state of La2−xSrxCuO4 near optimum doping. Phys. Rev. Lett. 77, 5417–5420 (1996).

    Article  ADS  Google Scholar 

  30. Balakirev, F. F. et al. Fermi surface reconstruction at optimum doping in high-Tc superconductors. Preprint at <http://arxiv.org/abs/0710.4612> (2007).

  31. Nachumi, B. et al. Muon spin relaxation study of the stripe phase order in La1.6−xNd0.4SrxCuO4 and related 214 cuprates. Phys. Rev. B 58, 8760-8772 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Behnia, A. Chubukov, P. Coleman, Y.B. Kim, S.A. Kivelson, G. Kotliar, K. Haule, G.G. Lonzarich, A.J. Millis, M.R. Norman, C. Proust, T.M. Rice, S. Sachdev, T. Senthil, H. Takagi and A.-M.S. Tremblay for discussions, and J. Corbin for his assistance with the experiments. L.T. acknowledges support from the Canadian Institute for Advanced Research and funding from NSERC, FQRNT, and a Canada Research Chair. L.B. was supported by NHMFL-UCGP and Y.J.J. by the NHMFL-Schuller fellow program. J.S.Z. and J.B.G. were supported by an NSF grant. The NHMFL is supported by an NSF grant and the State of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Taillefer.

Supplementary information

Supplementary Information

Supplementary Informations (PDF 249 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daou, R., Doiron-Leyraud, N., LeBoeuf, D. et al. Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-Tc superconductor. Nature Phys 5, 31–34 (2009). https://doi.org/10.1038/nphys1109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing