Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tomography of quantum detectors

Abstract

Measurement connects the world of quantum phenomena to the world of classical events. It has both a passive role—in observing quantum systems—and an active one, in preparing quantum states and controlling them. In view of the central status of measurement in quantum mechanics, it is surprising that there is no general recipe for designing a detector that measures a given observable1. Compounding this, the characterization of existing detectors is typically based on partial calibrations or elaborate models. Thus, experimental specification (that is, tomography) of a detector is of fundamental and practical importance. Here, we present the realization of quantum detector tomography2,3,4. We identify the positive-operator-valued measure describing the detector, with no ancillary assumptions. This result completes the triad, state5,6,7,8,9,10,11, process12,13,14,15,16,17 and detector tomography, required to fully specify an experiment. We characterize an avalanche photodiode and a photon-number-resolving detector capable of detecting up to eight photons18. This creates a new set of tools for accurately detecting and preparing non-classical light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experimental set-up.
Figure 2: The detector tomography data.
Figure 3: Optimal physical POVMs.
Figure 4: The Wigner functions of the ‘one click’ detector outcomes.

Similar content being viewed by others

References

  1. Braginsky, V. R. & Khalili, F. Ya. Quantum Measurement 38 (Cambridge Univ. Press, 1992).

    Book  Google Scholar 

  2. Luis, A. & Sanchez-Soto, L. L. Complete characterization of arbitrary quantum measurement processes. Phys. Rev. Lett. 83, 3573–3576 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  3. Fiurasek, J. Maximum-likelihood estimation of quantum measurement. Phys. Rev. A 64, 024102 (2001).

    Article  ADS  Google Scholar 

  4. D’Ariano, G. M., Maccone, L. & Lo Presti, P. Quantum calibration of measurement instrumentation. Phys. Rev. Lett. 93, 250407 (2004).

    Article  ADS  Google Scholar 

  5. Vogel, K. & Risken, H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989).

    Article  ADS  Google Scholar 

  6. Smithey, D. T., Beck, M., Raymer, M. G. & Faridani, A. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244–1247 (1993).

    Article  ADS  Google Scholar 

  7. Banaszek, K., Radzewicz, C., Wodkiewicz, K. & Krasinski, J. S. Direct measurement of the Wigner function by photon counting. Phys. Rev. A 60, 674–677 (1999).

    Article  ADS  Google Scholar 

  8. Banaszek, K., D’Ariano, G. M., Paris, M. G. A. & Sacchi, M. F. Maximum-likelihood estimation of the density matrix. Phys. Rev. A 61, 010304(R) (2000).

    Article  ADS  Google Scholar 

  9. White, A. G., James, D. F. V., Munro, W. J. & Kwiat, P. G. Exploring Hilbert space: Accurate characterization of quantum information. Phys. Rev. A 65, 012301 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  10. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007).

    Article  ADS  Google Scholar 

  11. Neergaard-Nielsen, J. S., Melholt Nielsen, B., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).

    Article  ADS  Google Scholar 

  12. Chuang, I. L. & Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455–2467 (1997).

    Article  ADS  Google Scholar 

  13. Poyatos, J. F., Cirac, J. I. & Zoller, P. Complete characterization of a quantum process: The two-bit quantum gate. Phys. Rev. Lett. 78, 390–393 (1997).

    Article  ADS  Google Scholar 

  14. Altepeter, J. B. et al. Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003).

    Article  ADS  Google Scholar 

  15. D’Ariano, G. M. & Maccone, L. Measuring quantum optical Hamiltonians. Phys. Rev. Lett. 80, 5465–5468 (1998).

    Article  ADS  Google Scholar 

  16. Nielsen, M. A., Knill, E. & Laflamme, R. Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52–55 (1998).

    Article  ADS  Google Scholar 

  17. Mitchell, M. W., Ellenor, C. W., Schneider, S. & Steinberg, A. M. Diagnosis, prescription and prognosis of a Bell-state filter by quantum process tomography. Phys. Rev. Lett. 91, 120402 (2003).

    Article  ADS  Google Scholar 

  18. Achilles, D., Silberhorn, Ch., Sliwa, C., Banaszek, K. & Walmsley, I. A. Fiber-assisted detection with photon number resolution. Opt. Lett. 28, 2387–2389 (2003).

    Article  ADS  Google Scholar 

  19. Resch, K. J. et al. Time-reversal and super-resolving phase measurements. Phys. Rev. Lett. 98, 223601 (2007).

    Article  ADS  Google Scholar 

  20. Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396 (2007).

    Article  ADS  Google Scholar 

  21. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  22. Dunn, T., Walmsley, I. A. & Mukamel, S. Experimental determination of the quantum-mechanical state of a molecular vibrational mode using fluorescence tomography. Phys. Rev. Lett. 74, 884–887 (1995).

    Article  ADS  Google Scholar 

  23. O’Brien, J. L. et al. Quantum process tomography of a controlled-NOT gate. Phys. Rev. Lett. 90, 193601 (2004).

    Google Scholar 

  24. Lvovsky, A. I. et al. Quantum state reconstruction of the single-photon Fock state. Phys. Rev. Lett. 87, 050402 (2001).

    Article  ADS  Google Scholar 

  25. Boyd, S. & Vandenberghe, L. Convex Optimization (Cambridge Univ. Press, 2004).

    Book  Google Scholar 

  26. Achilles, D. et al. Photon-number-resolving detection using time-multiplexing. J. Mod. Opt. 51, 1499–1515 (2004).

    Article  ADS  Google Scholar 

  27. Eisert, J., Scheel, S. & Plenio, M. B. Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett. 89, 137903 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  28. Browne, D. E., Eisert, J., Scheel, S. & Plenio, M. B. Driving non-Gaussian to Gaussian states with linear optics. Phys. Rev. A 67, 062320 (2003).

    Article  ADS  Google Scholar 

  29. Kardynal, B. E., Yuan, Z. L. & Shields, A. J. An avalanche-photodiode-based photon-number-resolving detector. Nature Photon. 2, 425–428 (2008).

    Article  Google Scholar 

  30. Boulant, N., Havel, T. F., Pravia, M. A. & Cory, D. G. Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points. Phys. Rev. A 67, 042322 (2003).

    Article  ADS  Google Scholar 

  31. Jezek, M., Fiurasek, J. & Hradil, Z. Quantum inference of states and processes. Phys. Rev. A 68, 012305 (2003).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the EU integrated project QAP and STREP COMPAS, EPSRC grants EP/C546237/1 and QIP-IRC, the Royal Society, Microsoft Research and the EURYI Award Scheme. H.C.-R. has been supported by the European Commission under the Marie Curie Programme and by the Heinz-Durr Programme of the Studienstiftung des dt. Volkes.

Author information

Authors and Affiliations

Authors

Contributions

J.S.L., H.C-R. and I.A.W. contributed to the concept of the experiment and its design, as well as to laboratory measurements and data analysis. A.F., K.L.P., M.B.P. and J.E. contributed modelling and data analysis. Ch. S. and T.C.R. contributed to the conception of the project and to its planning.

Corresponding authors

Correspondence to J. S. Lundeen or I. A. Walmsley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundeen, J., Feito, A., Coldenstrodt-Ronge, H. et al. Tomography of quantum detectors. Nature Phys 5, 27–30 (2009). https://doi.org/10.1038/nphys1133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing