Abstract
When two Bose–Einstein condensates collide with high collisional energy, the celebrated matter-wave interference pattern appears1. For lower collisional energies, the repulsive interaction energy becomes significant, and the interference pattern evolves into an array of grey solitons2,3. But the lowest collisional energies, producing a single pair of solitons, have not been probed so far. Here, we report on experiments using density engineering on the healing length scale3,4 to produce such a pair of solitons. We see evidence that the solitons evolve periodically between vortex rings and solitons. The stable, periodic evolution is in sharp contrast to the behaviour seen in previous experiments5,6 in which the solitons decay irreversibly into vortex rings through the so-called snake instability7,8,9,10,11,12,13. The evolution can be understood in terms of conservation of mass and energy in a narrow condensate.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997).
Scott, T. F., Ballagh, R. J. & Burnett, K. Formation of fundamental structures in Bose–Einstein condensates. J. Phys. B 31, L329–L335 (1998).
Carr, L. D., Brand, J., Burger, S. & Sanpera, A. Dark-soliton creation in Bose–Einstein condensates. Phys. Rev. A 63, 051601(R) (2001).
Reinhardt, W. P. & Clark, C. W. Soliton dynamics in the collisions of Bose–Einstein condensates: An analogue of the Josephson effect. J. Phys. B 30, L785–L789 (1997).
Anderson, B. P. et al. Watching dark solitons decay into vortex rings in a Bose–Einstein condensate. Phys. Rev. Lett. 86, 2926–2929 (2001).
Dutton, Z., Budde, M., Slowe, C. & Hau, L. V. Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose–Einstein condensate. Science 293, 663–668 (2001).
Kadomtsev, B. B. & Petviashvili, V. I. On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539–541 (1970).
Jones, C. A., Putterman, S. J. & Roberts, P. H. Motions in a Bose condensate: V. Stability of solitary wave solutions of non-linear Schrödinger equations in two and three dimensions. J. Phys. A 19, 2991–3011 (1986).
Josserand, C. & Pomeau, Y. Generation of vortices in a model of superfluid 4He by the Kadomtsev–Petviashvili instability. Europhys. Lett. 30, 43–48 (1995).
Feder, D. L., Pindzola, M. S., Collins, L. A., Schneider, B. I. & Clark, C. W. Dark-soliton states of Bose–Einstein condensates in anisotropic traps. Phys. Rev. A 62, 053606 (2000).
Brand, J. & Reinhardt, W. P. Solitonic vortices and the fundamental modes of the ‘snake instability’: Possibility of observation in the gaseous Bose–Einstein condensate. Phys. Rev. A 65, 043612 (2002).
Theocharis, G., Frantzeskakis, D. J., Kevrekidis, P. G., Malomed, B. A. & Kivshar, Y. S. Ring dark solitons and vortex necklaces in Bose–Einstein condensates. Phys. Rev. Lett. 90, 120403 (2003).
Mamaev, A. V., Saffman, M. & Zozulya, A. A. Propagation of dark stripe beams in nonlinear media: Snake instability and creation of optical vortices. Phys. Rev. Lett. 76, 2262–2265 (1996).
Jo, G.-B. et al. Phase-sensitive recombination of two Bose–Einstein condensates on an atom chip. Phys. Rev. Lett. 98, 180401 (2007).
Pitaevskii, L. & Stringari, S. Bose–Einstein condensation Sects 5.4 and 5.5 (Oxford Univ. Press, 2003).
Jackson, A. D., Kavoulakis, G. M. & Pethick, C. J. Solitary waves in clouds of Bose–Einstein condensed atoms. Phys. Rev. A 58, 2417–2422 (1998).
Burger, S. et al. Dark solitons in Bose–Einstein condensates. Phys. Rev. Lett. 83, 5198–5201 (1999).
Denschlag, J. et al. Generating solitons by phase engineering of a Bose–Einstein condensate. Science 287, 97–101 (2000).
Becker, C. et al. Oscillations and interactions of dark and dark-bright solitons in Bose–Einstein condensates. Nature Phys. 4, 496–501 (2008).
Muryshev, A. E., van Linden van den Heuvell, H. B. & Shlyapnikov, G. V. Stability of standing matter waves in a trap. Phys. Rev. A 60, R2665–R2668 (1999).
Carr, L. D., Clark, C. W. & Reinhardt, W. P. Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity. Phys. Rev. A 62, 063610 (2000).
Komineas, S. & Papanicolaou, N. Nonlinear waves in a cylindrical Bose–Einstein condensate. Phys. Rev. A 67, 023615 (2003).
Donnelly, R. J. Quantized Vortices in Helium II Chs 1, 4 (Cambridge Univ. Press, 1991).
Rayfield, G. W. & Reif, F. Quantized vortex rings in superfluid helium. Phys. Rev. 136, A1194–A1208 (1964).
Guilleumas, M., Jezek, D. M., Mayol, R., Pi, M. & Barranco, M. Generating vortex rings in Bose–Einstein condensates in the line-source approximation. Phys. Rev. A 65, 053609 (2002).
Andrews, M. R. et al. Propagation of sound in a Bose–Einstein condensate. Phys. Rev. Lett. 79, 553–556 (1997).
Zaremba, E. Sound propagation in a cylindrical Bose-condensed gas. Phys. Rev. A 57, 518–521 (1998).
Snyder, A. W., Hewlett, S. J. & Mitchell, D. J. Periodic solitons in optics. Phys. Rev. E 51, 6297–6300 (1995).
Weller, A. et al. Experimental observation of oscillating and interacting matter wave dark solitons. Phys. Rev. Lett. 101, 130401 (2008).
Levy, S., Lahoud, E., Shomroni, I. & Steinhauer, J. The a.c. and d.c. Josephson effects in a Bose–Einstein condensate. Nature 449, 579–583 (2007).
Acknowledgements
We thank A. Soffer, M. Segev, W. Ketterle, A. Minguzzi and R. Ozeri for helpful discussions. This work was supported by the Israel Science Foundation.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary Informations (PDF 38 kb)
Rights and permissions
About this article
Cite this article
Shomroni, I., Lahoud, E., Levy, S. et al. Evidence for an oscillating soliton/vortex ring by density engineering of a Bose–Einstein condensate. Nature Phys 5, 193–197 (2009). https://doi.org/10.1038/nphys1177
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1177
This article is cited by
-
Localized waves and mixed interaction solutions with dynamical analysis to the Gross–Pitaevskii equation in the Bose–Einstein condensate
Nonlinear Dynamics (2021)
-
Merging of Rotating Bose–Einstein Condensates
Journal of Low Temperature Physics (2019)
-
Bose–Einstein Condensation of Atoms and Photons
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences (2015)
-
Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate
Nature Physics (2013)
-
Ground states, solitons and spin textures in spin-1 Bose-Einstein condensates
Frontiers of Physics (2013)


