Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Noisy Kondo impurities

Abstract

In the original discussion of the Kondo effect, the increase of the resistance in an alloy such as Cu0.998Fe0.002 at low temperature was explained by the antiferromagnetic coupling between a magnetic impurity and the spin of the host’s conduction electrons1. This coupling has since emerged as a very generic property of localized electronic states coupled to a continuum2,3,4,5,6,7. Recently, the possibility to design artificial magnetic impurities in nanoscale conductors has opened avenues to the study of this many-body phenomenon in a controlled way and, in particular, in out-of-equilibrium situations8,9,10. So far though, measurements have focused on the average current. Current fluctuations (noise) on the other hand are a sensitive probe that contains detailed information about electronic transport. Here, we report on noise measurements in artificial Kondo impurities realized in carbon-nanotube devices. We find a striking enhancement of the current noise within the Kondo resonance, in contradiction with simple non-interacting theories. Our findings provide a sensitive test bench for one of the most important many-body theories of condensed matter in out-of-equilibrium situations and shed light on the noise properties of highly conductive molecular devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anomalous temperature dependence of the current noise at the onset of the Kondo effect.
Figure 2: Noise enhancement within the Kondo resonance.
Figure 3: Schematic diagrams of the two limiting cases for noise in an SWNT in the Kondo regime.
Figure 4: Scaling properties of the noise of the Kondo ‘impurities’.

Similar content being viewed by others

References

  1. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

    Article  ADS  Google Scholar 

  2. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article  ADS  Google Scholar 

  3. Li, J., Schneider, W.-D., Berndt, R. & Delley, B. Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893–2896 (1998).

    Article  ADS  Google Scholar 

  4. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

    Article  ADS  Google Scholar 

  5. Nygard, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000).

    Article  ADS  Google Scholar 

  6. Park, J. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  ADS  Google Scholar 

  7. Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    Article  ADS  Google Scholar 

  8. De franceschi, S. Kondo effect out of equilibrium in a mesoscopic device. Phys. Rev. Lett. 89, 156801 (2002).

    Article  ADS  Google Scholar 

  9. Paaske, J., Rosch, A. & Wölfle, P. Non-equilibrium singlet–triplet Kondo effect in carbon nanotubes. Nature Phys. 2, 460–464 (2006).

    Article  ADS  Google Scholar 

  10. Grobis, M., Rau, I. G., Potok, R. M., Shtrikman, H. & Goldhaber-Gordon, D. Universal scaling in nonequilibrium transport through a single channel Kondo dot. Phys. Rev. Lett. 100, 246601 (2008).

    Article  ADS  Google Scholar 

  11. Blanter, Ya. M. & Büttiker, M. Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–166 (2000).

    Article  ADS  Google Scholar 

  12. Zarchin, O., Zaffalon, M., Heiblum, M., Mahalu, D. & Umansky, V. Two-electron bunching in transport through a quantum dot induced by Kondo correlations. Phys. Rev. B 77, 241303 (2008).

    Article  ADS  Google Scholar 

  13. Babic, B., Kontos, T. & Schönenberger, C. On the Kondo effect at half filling. Phys. Rev. B 70, 195408 (2004).

    Article  ADS  Google Scholar 

  14. Jarillo-Herrero, P. et al. Orbital Kondo effect in carbon nanotubes. Nature 434, 484–488 (2005).

    Article  ADS  Google Scholar 

  15. Makarovski, A., Liu, J. & Finkelstein, G. Evolution of transport regimes in carbon nanotube quantum dots. Phys. Rev. Lett. 99, 066801 (2007).

    Article  ADS  Google Scholar 

  16. Herrmann, L. G. et al. Shot noise in Fabry–Perot interferometers based on carbon nanotubes. Phys. Rev. Lett. 99, 156804 (2007).

    Article  ADS  Google Scholar 

  17. Lim, J. S., Choi, M.-S., Choi, M. Y., López, R. & Aguado, R. Kondo effects in carbon nanotubes: From SU(4) to SU(2) symmetry. Phys. Rev. B 74, 205119 (2006).

    Article  ADS  Google Scholar 

  18. Le Hur, K., Simon, P. & Loss, D. Transport through a quantum dot with SU(4) Kondo entanglement. Phys. Rev. B 75, 035332 (2007).

    Article  ADS  Google Scholar 

  19. Meir, Y. & Golub, A. Shot noise through a quantum dot in the Kondo regime. Phys. Rev. Lett. 88, 116802 (2002).

    Article  ADS  Google Scholar 

  20. Gogolin, A. O. & Komnik, A. Full counting statistics for the Kondo dot in the unitary limit. Phys. Rev. Lett. 97, 016602 (2005).

    Article  ADS  Google Scholar 

  21. Sela, E., Oreg, Y., von Oppen, F. & Koch, J. Fractional shot noise in the Kondo regime. Phys. Rev. Lett. 97, 086601 (2006).

    Article  ADS  Google Scholar 

  22. Mora, C., Leyronas, X. & Regnault, N. Current noise through a Kondo quantum dot in a SU(N) Fermi liquid state. Phys. Rev. Lett. 100, 036604 (2008).

    Article  ADS  Google Scholar 

  23. Vitushinsky, P., Clerk, A. A. & Le Hur, K. Effects of Fermi liquid interactions on the shot noise of an SU(N) Kondo quantum dot. Phys. Rev. Lett. 100, 036603 (2008).

    Article  ADS  Google Scholar 

  24. Lopez, R. & Sanchez, D. Nonequilibrium spintronic transport through an artificial Kondo impurity: Conductance, magnetoresistance, and shot noise. Phys. Rev. Lett. 90, 116602 (2004).

    Article  ADS  Google Scholar 

  25. Haldane, F. D. M. Scaling theory of the asymmetric Anderson model. Phys. Rev. Lett. 40, 416–419 (1978).

    Article  ADS  Google Scholar 

  26. Sasaki, S., Amaha, S., Asakawa, N., Eto, M. & Tarucha, S. Enhanced Kondo effect via tuned orbital degeneracy in a spin 1/2 artificial atom. Phys. Rev. Lett. 93, 017205 (2004).

    Article  ADS  Google Scholar 

  27. Lopez, R., Aguado, R. & Platero, G. Shot noise in strongly correlated double quantum dots. Phys. Rev. B 69, 235305 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Cottet for a critical reading of the manuscript and K. Le Hur, P. Simon, L. Glazman and N. Regnault for illuminating discussions. This work is supported by the SRC (R11-2000-071) contract, the BK21 contract, the ANR-05-NANO-055 contract, the EU contract FP6-IST-021285-2 and by the C’Nano Ile de France contract SPINMOL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kontos.

Supplementary information

Supplementary Information

Supplementary Informations (PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delattre, T., Feuillet-Palma, C., Herrmann, L. et al. Noisy Kondo impurities. Nature Phys 5, 208–212 (2009). https://doi.org/10.1038/nphys1186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing