Abstract
‘Schrödinger cat’ states of light1, defined as quantum superpositions of quasi-classical coherent states, have recently emerged as an alternative to single-photon qubits for quantum-information processing2,3,4,5,6. Their richer structure provides significant advantages for quantum teleportation, universal quantum computation, high-precision measurements and fundamental tests of quantum physics7,8,9,10,11,12,13. Local superpositions of free-propagating coherent states have been realized experimentally, but their applications were so far limited by their extreme sensitivity to losses, and by the lack of quantum gates for coherent qubit rotations. Here, we demonstrate a simple approach to generating strongly entangled non-local superpositions of coherent states, using a very lossy quantum channel. Such superpositions should be useful for implementing coherent qubit-rotation gates, and for teleporting these qubits over long distances. The generation scheme may be extended to creating entangled coherent superpositions with arbitrarily large amplitudes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812 (1935).
Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).
Neergaard-Nielsen, J. S., Nielsen, B. M., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).
Wakui, K., Takahashi, H., Furusawa, A. & Sasaki, M. Controllable generation of highly nonclassical states from nearly pure squeezed vacua. Opt. Express 15, 3568–3574 (2007).
Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical Schrödinger cats from photon number states. Nature 448, 784–786 (2007).
Takahashi, H. et al. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction. Phys. Rev. Lett. 101, 233605 (2008).
Jeong, H., Kim, M. S. & Lee, J. Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001).
Ralph, T. C., Gilchrist, A., Milburn, G. J., Munro, W. J. & Glancy, S. Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003).
Munro, W. J., Nemoto, K., Milburn, G. J. & Braunstein, S. L. Weak-force detection with superposed coherent states. Phys. Rev. A 66, 023819 (2002).
Toscano, F., Dalvit, D. A. R., Davidovich, L. & Zurek, W. H. Sub-Planck phase-space structures and Heisenberg-limited measurements. Phys. Rev. A 73, 023803 (2006).
Wenger, J., Hafezi, M., Grosshans, F., Tualle-Brouri, R. & Grangier, P. Maximal violation of Bell inequalities using continuous-variable measurements. Phys. Rev. A 67, 012105 (2003).
Haroche, S. Science and Ultimate Reality (Cambridge Univ. Press, 2004).
Stobińska, M., Jeong, H. & Ralph, T. C. Violation of Bell’s inequality using classical measurements and non-linear local operations. Phys. Rev. A 75, 052105 (2007).
Leonhardt, U. Measuring the Quantum State of Light (Cambridge Univ. Press, 1997).
Lütkenhaus, N., Calsamiglia, J. & Suominen, K. A. Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999).
Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).
Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R. & Grangier, P. Increasing entanglement between Gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502 (2007).
Enk, S. J. V. & Hirota, O. Entangled coherent states: Teleportation and decoherence. Phys. Rev. A 64, 022313 (2001).
Wenger, J., Ourjoumtsev, A., Tualle-Brouri, R. & Grangier, P. Time-resolved homodyne characterization of individual quadrature-entangled pulses. Eur. Phys. J. D 32, 391–396 (2005).
Lvovsky, A. I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B 6, S556–S559 (2004).
Vidal, G. & Werner, R. F. A computable measurement of entanglement. Phys. Rev. A 65, 032314 (2002).
Babichev, S. A., Appel, J. & Lvovsky, A. I. Homodyne tomography characterization and nonlocality of a dual-mode optical qubit. Phys.Rev. Lett. 92, 193601 (2004).
Acknowledgements
This work is supported by the EU ICT/FET program COMPAS.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary Informations (PDF 234 kb)
Rights and permissions
About this article
Cite this article
Ourjoumtsev, A., Ferreyrol, F., Tualle-Brouri, R. et al. Preparation of non-local superpositions of quasi-classical light states. Nature Phys 5, 189–192 (2009). https://doi.org/10.1038/nphys1199
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1199
This article is cited by
-
Algorithm of quantum engineering of large-amplitude high-fidelity Schrödinger cat states
Scientific Reports (2023)
-
Slowing quantum decoherence of oscillators by hybrid processing
npj Quantum Information (2022)
-
Improvement of hybrid entanglement by dual-way photon polarization measurement
Quantum Information Processing (2021)
-
Non-Gaussian quantum states of a multimode light field
Nature Physics (2020)
-
Efficient production of large-size optical Schrödinger cat states
Scientific Reports (2019)