Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preparation of non-local superpositions of quasi-classical light states

Abstract

‘Schrödinger cat’ states of light1, defined as quantum superpositions of quasi-classical coherent states, have recently emerged as an alternative to single-photon qubits for quantum-information processing2,3,4,5,6. Their richer structure provides significant advantages for quantum teleportation, universal quantum computation, high-precision measurements and fundamental tests of quantum physics7,8,9,10,11,12,13. Local superpositions of free-propagating coherent states have been realized experimentally, but their applications were so far limited by their extreme sensitivity to losses, and by the lack of quantum gates for coherent qubit rotations. Here, we demonstrate a simple approach to generating strongly entangled non-local superpositions of coherent states, using a very lossy quantum channel. Such superpositions should be useful for implementing coherent qubit-rotation gates, and for teleporting these qubits over long distances. The generation scheme may be extended to creating entangled coherent superpositions with arbitrarily large amplitudes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Remote entanglement of two independent cat states through lossy channels.
Figure 2: Experimental set-up.
Figure 3: Measured joint probability distributions and reconstructed Wigner functions.
Figure 4: Estimated entanglement and generation rate ns for various quantum states.

Similar content being viewed by others

References

  1. Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812 (1935).

    Article  ADS  Google Scholar 

  2. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).

    Article  ADS  Google Scholar 

  3. Neergaard-Nielsen, J. S., Nielsen, B. M., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).

    Article  ADS  Google Scholar 

  4. Wakui, K., Takahashi, H., Furusawa, A. & Sasaki, M. Controllable generation of highly nonclassical states from nearly pure squeezed vacua. Opt. Express 15, 3568–3574 (2007).

    Article  ADS  Google Scholar 

  5. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical Schrödinger cats from photon number states. Nature 448, 784–786 (2007).

    Article  ADS  Google Scholar 

  6. Takahashi, H. et al. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction. Phys. Rev. Lett. 101, 233605 (2008).

    Article  ADS  Google Scholar 

  7. Jeong, H., Kim, M. S. & Lee, J. Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001).

    Article  ADS  Google Scholar 

  8. Ralph, T. C., Gilchrist, A., Milburn, G. J., Munro, W. J. & Glancy, S. Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003).

    Article  ADS  Google Scholar 

  9. Munro, W. J., Nemoto, K., Milburn, G. J. & Braunstein, S. L. Weak-force detection with superposed coherent states. Phys. Rev. A 66, 023819 (2002).

    Article  ADS  Google Scholar 

  10. Toscano, F., Dalvit, D. A. R., Davidovich, L. & Zurek, W. H. Sub-Planck phase-space structures and Heisenberg-limited measurements. Phys. Rev. A 73, 023803 (2006).

    Article  ADS  Google Scholar 

  11. Wenger, J., Hafezi, M., Grosshans, F., Tualle-Brouri, R. & Grangier, P. Maximal violation of Bell inequalities using continuous-variable measurements. Phys. Rev. A 67, 012105 (2003).

    Article  ADS  Google Scholar 

  12. Haroche, S. Science and Ultimate Reality (Cambridge Univ. Press, 2004).

    Google Scholar 

  13. Stobińska, M., Jeong, H. & Ralph, T. C. Violation of Bell’s inequality using classical measurements and non-linear local operations. Phys. Rev. A 75, 052105 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  14. Leonhardt, U. Measuring the Quantum State of Light (Cambridge Univ. Press, 1997).

    MATH  Google Scholar 

  15. Lütkenhaus, N., Calsamiglia, J. & Suominen, K. A. Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  16. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  17. Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R. & Grangier, P. Increasing entanglement between Gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502 (2007).

    Article  ADS  Google Scholar 

  18. Enk, S. J. V. & Hirota, O. Entangled coherent states: Teleportation and decoherence. Phys. Rev. A 64, 022313 (2001).

    Article  ADS  Google Scholar 

  19. Wenger, J., Ourjoumtsev, A., Tualle-Brouri, R. & Grangier, P. Time-resolved homodyne characterization of individual quadrature-entangled pulses. Eur. Phys. J. D 32, 391–396 (2005).

    Article  ADS  Google Scholar 

  20. Lvovsky, A. I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B 6, S556–S559 (2004).

    Article  ADS  Google Scholar 

  21. Vidal, G. & Werner, R. F. A computable measurement of entanglement. Phys. Rev. A 65, 032314 (2002).

    Article  ADS  Google Scholar 

  22. Babichev, S. A., Appel, J. & Lvovsky, A. I. Homodyne tomography characterization and nonlocality of a dual-mode optical qubit. Phys.Rev. Lett. 92, 193601 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the EU ICT/FET program COMPAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Ourjoumtsev.

Supplementary information

Supplementary Information

Supplementary Informations (PDF 234 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ourjoumtsev, A., Ferreyrol, F., Tualle-Brouri, R. et al. Preparation of non-local superpositions of quasi-classical light states. Nature Phys 5, 189–192 (2009). https://doi.org/10.1038/nphys1199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing