Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin of the electrophoretic force on DNA in solid-state nanopores

Abstract

Despite gel electrophoresis being one of the main workhorses of molecular biology, the physics of polyelectrolyte electrophoresis in a strongly confined environment remains poorly understood. Theory indicates that forces in electrophoresis result from interplay between ionic screening and hydrodynamics1,2, but these ideas could so far be addressed only indirectly by experiments based on macroscopic porous gels. Here, we provide a first direct experimental test by measuring the electrophoretic force on a single DNA molecule threading through a solid-state nanopore3 as a function of pore size. The stall force gradually decreases on increasing the nanopore diameter from 6 to 90 nm, inconsistent with expectations from simple electrostatics and strikingly demonstrating the influence of the hydrodynamic environment. We model this process by applying the coupled Poisson–Boltzmann and Stokes equations in the nanopore geometry4,5 and find good agreement with the experimental results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental configuration.
Figure 2: Mean-field calculations.
Figure 3: Conductance change due to DNA capture.
Figure 4: Pore-size dependence of the DNA stalling force.

Similar content being viewed by others

References

  1. Long, D., Viovy, J. L. & Ajdari, A. Stretching DNA with electric fields revisited. Biopolymers 39, 755–759 (1996).

    Article  Google Scholar 

  2. Viovy, J. L. Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Rev. Mod. Phys. 72, 813–822 (2000).

    Article  ADS  Google Scholar 

  3. Keyser, U. et al. Direct force measurements on DNA in a solid-state nanopore. Nature Phys. 2, 473–477 (2006).

    Article  ADS  Google Scholar 

  4. Ghosal, S. The effect of salt concentration on the electrophoretic speed of a polyelectrolyte through a nanopore. Phys. Rev. Lett. 98, 238104 (2007).

    Article  ADS  Google Scholar 

  5. Ghosal, S. Electro-kinetic-flow-induced viscous drag on a tethered DNA inside a nanopore. Phys. Rev. E 76, 061916 (2007).

    Article  ADS  Google Scholar 

  6. Kasianowicz, J., Brandin, E., Branton, D. & Deamer, D. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  ADS  Google Scholar 

  7. Meller, A., Nivon, L. & Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438 (2001).

    Article  ADS  Google Scholar 

  8. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  ADS  Google Scholar 

  9. Li, J., Gershow, M., Stein, D., Brandin, E. & Golovchenko, J. DNA molecules and configurations in a solid-state nanopore. Nature Mater. 2, 1611–1615 (2003).

    Google Scholar 

  10. Chang, H. et al. DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Lett. 4, 1551–1556 (2004).

    Article  ADS  Google Scholar 

  11. Storm, A., Chen, J., Zandbergen, H. & Dekker, C. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E 71, 051903 (2005).

    Article  ADS  Google Scholar 

  12. Smeets, R. et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6, 89–95 (2006).

    Article  ADS  Google Scholar 

  13. Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

    Article  ADS  Google Scholar 

  14. Ghosal, S. Electrophoresis of a polyelectrolyte through a nanopore. Phys. Rev. E 74, 041901 (2006).

    Article  ADS  Google Scholar 

  15. Wanunu, M., Sutin, J., McNally, B., Chow, A. & Meller, A. DNA translocation governed by interactions with solid state nanopores. Biophys. J. 95, 4716–4725 (2008).

    Article  ADS  Google Scholar 

  16. Levy, S., Mannion, J., Cheng, J., Reccius, C. & Craighead, H. Entropic unfolding of DNA molecules in nanofluidic channels. Nano Lett. 8, 3839–3844 (2008).

    Article  ADS  Google Scholar 

  17. Manning, G. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179–246 (1978).

    Article  Google Scholar 

  18. Smeets, R., Keyser, U., Dekker, N. & Dekker, C. Noise in solid-state nanopores. Proc. Natl Acad. Sci. USA 105, 417–421 (2008).

    Article  ADS  Google Scholar 

  19. Hall, J. Access resistance of a small circular pore. J. Gen. Physiol. 66, 531–532 (1975).

    Article  Google Scholar 

  20. Netz, R. Polyelectrolytes in electric fields. J. Phys. Chem. 107, 8208–8217 (2003).

    Article  Google Scholar 

  21. Behrens, S. & Grier, D. The charge of glass and silica surfaces. J. Chem. Phys. 115, 6716–6721 (2001).

    Article  ADS  Google Scholar 

  22. Wang, M., Yin, H., Landick, R., Gelles, J. & Block, S. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997).

    Article  ADS  Google Scholar 

  23. Luan, B. & Aksimentiev, A. Effective screening of the DNA charge in a nanopore. Phys. Rev. E 78, 021912 (2008).

    Article  ADS  Google Scholar 

  24. Storm, A. et al. Fast DNA translocation through a solid-state nanopore. Nano Lett. 4, 1193–1197 (2005).

    Article  ADS  Google Scholar 

  25. Storm, A., Chen, J., Ling, X., Zandbergen, H. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nature Mater. 2, 537–540 (2003).

    Article  ADS  Google Scholar 

  26. Keyser, U., van der Does, J., Dekker, C. & Dekker, N. Optical tweezers for force measurements on DNA in nanopores. Rev. Sci. Instrum. 77, 105105 (2006).

    Article  ADS  Google Scholar 

  27. Trepagnier, E., Radenovic, A., Sivak, D., Geissler, P. & Liphardt, J. Controlling DNA capture and propagation through artificial nanopores. Nano Lett. 7, 2824–2830 (2007).

    Article  ADS  Google Scholar 

  28. Keyser, U. et al. Nanopore tomography of a laser focus. Nano Lett. 5, 2253–2256 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to M.-Y. Wu and R. Smeets for the fabrication of the nanopores and to Y.-H. Chien and S. Hage for the preparation of the DNA constructs. We acknowledge J. van der Does for assistance with construction of the experimental set-up. This work was supported by NWO, FOM and the Emmy Noether Program of the DFG.

Author information

Authors and Affiliations

Authors

Contributions

Conceived experiments: S.v.D., U.F.K., N.H.D., C.D. and S.G.L. Carried out experiments and analysed data: S.v.D. and U.F.K. Wrote paper: S.v.D., U.F.K., N.H.D., C.D. and S.G.L.

Corresponding author

Correspondence to Serge G. Lemay.

Supplementary information

Supplementary Information

Supplementary Information (PDF 257 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dorp, S., Keyser, U., Dekker, N. et al. Origin of the electrophoretic force on DNA in solid-state nanopores. Nature Phys 5, 347–351 (2009). https://doi.org/10.1038/nphys1230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing