Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of a magnetic Feshbach resonance with laser light

Abstract

The capability to tune the strength of the elastic interparticle interaction is crucial for many experiments with ultracold gases. Magnetic Feshbach resonances1,2 are widely harnessed for this purpose, but future experiments3,4,5,6,7,8 would benefit from extra flexibility, in particular from the capability to spatially modulate the interaction strength on short length scales. Optical Feshbach resonances9,10,11,12,13,14,15 do offer this possibility in principle, but in alkali atoms they induce rapid loss of particles due to light-induced inelastic collisions. Here, we report experiments that demonstrate that light near-resonant with a molecular bound-to-bound transition in 87Rb can be used to shift the magnetic field at which a magnetic Feshbach resonance occurs. This enables us to tune the interaction strength with laser light, but with considerably less loss than using an optical Feshbach resonance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Level scheme of the experiment.
Figure 2: Shifting a Feshbach resonance with laser light.
Figure 3: Autler–Townes splitting of a magnetic Feshbach resonance caused by application of a laser that drives a bound-to-bound transition at a power of P=0.47 mW.
Figure 4: Systematic study of the resonance positions associated with the Autler–Townes doublet.

Similar content being viewed by others

References

  1. Tiesinga, E., Verhaar, B. J. & Stoof, H. T. C. Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4114–4122 (1993).

    Article  ADS  Google Scholar 

  2. Inouye, S., Andrews, M. R., Stenger, J., Miesner, H.-J., Stamper-Kurn, D. M. & Ketterle, W. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998).

    Article  ADS  Google Scholar 

  3. Garay, L. J., Anglin, J. R., Cirac, J. I. & Zoller, P. Sonic analog of gravitational black holes in Bose–Einstein condensates. Phys. Rev. Lett. 85, 4643–4647 (2000).

    Article  ADS  Google Scholar 

  4. Carusotto, I., Fagnocchi, S., Recati, A., Balbinot, R. & Fabbri, A. Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates. New J. Phys. 10, 103001 (2008).

    Article  ADS  Google Scholar 

  5. Rodas-Verde, M. I., Michinel, H. & Pérez-García, V. M. Controllable soliton emission from a Bose–Einstein condensate. Phys. Rev. Lett. 95, 153903 (2005).

    Article  ADS  Google Scholar 

  6. Dong, G., Hu, B. & Lu, W. Ground-state properties of a Bose–Einstein condensate tuned by a far-off-resonant optical field. Phys. Rev. A 74, 063601 (2006).

    Article  ADS  Google Scholar 

  7. Abdullaev, F. K., Gammal, A., Salerno, M. & Tomio, L. Localized modes of binary mixtures of Bose–Einstein condensates in nonlinear optical lattices. Phys. Rev. A 77, 023615 (2008).

    Article  ADS  Google Scholar 

  8. Deng, X.-L., Porras, D. & Cirac, J. I. Quantum phases of interacting phonons in ion traps. Phys. Rev. A 77, 033403 (2008).

    Article  ADS  Google Scholar 

  9. Fedichev, P. O., Kagan, Y., Shlyapnikov, G. V. & Walraven, J. T. M. Influence of nearly resonant light on the scattering length in low-temperature atomic gases. Phys. Rev. Lett. 77, 2913–2916 (1996).

    Article  ADS  Google Scholar 

  10. Bohn, J. L. & Julienne, P. S. Prospects for influencing scattering lengths with far-off-resonant light. Phys. Rev. A 56, 1486–1491 (1997).

    Article  ADS  Google Scholar 

  11. Fatemi, F. K., Jones, K. M. & Lett, P. D. Observation of optically induced Feshbach resonances in collisions of cold atoms. Phys. Rev. Lett. 85, 4462–4465 (2000).

    Article  ADS  Google Scholar 

  12. Theis, M. et al. Tuning the scattering length with an optically induced Feshbach resonance. Phys. Rev. Lett. 93, 123001 (2004).

    Article  ADS  Google Scholar 

  13. Thalhammer, G., Theis, M., Winkler, K., Grimm, R. & Hecker Denschlag, J. Inducing an optical Feshbach resonance via stimulated Raman coupling. Phys. Rev. A 71, 033403 (2005).

    Article  ADS  Google Scholar 

  14. Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006).

    Article  ADS  Google Scholar 

  15. Enomoto, K., Kasa, K., Kitagawa, M. & Takahashi, Y. Optical Feshbach resonance using the intercombination transition. Phys. Rev. Lett. 101, 203201 (2008).

    Article  ADS  Google Scholar 

  16. Volz, T. et al. Preparation of a quantum state with one molecule at each site of an optical lattice. Nature Phys. 2, 692–695 (2006).

    Article  ADS  Google Scholar 

  17. Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955).

    Article  ADS  Google Scholar 

  18. Mackie, M., Fenty, M., Savage, D. & Kesselman, J. Cross-molecular coupling in combined photoassociation and Feshbach resonances. Phys. Rev. Lett. 101, 040401 (2008).

    Article  ADS  Google Scholar 

  19. van Abeelen, F. A., Heinzen, D. J. & Verhaar, B. J. Photoassociation as a probe of Feshbach resonances in cold-atom scattering. Phys. Rev. A 57, R4102–R4105 (1998).

    Article  ADS  Google Scholar 

  20. Junker, M. et al. Photoassociation of a Bose–Einstein condensate near a Feshbach resonance. Phys. Rev. Lett. 101, 060406 (2008).

    Article  ADS  Google Scholar 

  21. Marte, A. et al. Feshbach resonances in rubidium 87: Precision measurement and analysis. Phys. Rev. Lett. 89, 283202 (2002).

    Article  Google Scholar 

  22. Castin, Y. & Dum, R. Bose–Einstein condensates in time dependent traps. Phys. Rev. Lett. 77, 5315–5319 (1996).

    Article  ADS  Google Scholar 

  23. Volz, T., Dürr, S., Ernst, S., Marte, A. & Rempe, G. Characterization of elastic scattering near a Feshbach resonance in 87Rb. Phys. Rev. A 68, 010702(R) (2003).

    Article  ADS  Google Scholar 

  24. Smirne, G. et al. Collisional relaxation of Feshbach molecules and three-body recombination in 87Rb Bose–Einstein condensates. Phys. Rev. A 75, 020702(R) (2007).

    Article  ADS  Google Scholar 

  25. Kraemer, T. et al. Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 315–318 (2006).

    Article  ADS  Google Scholar 

  26. Timmermans, E., Tommasini, P., Hussein, M. & Kerman, A. Feshbach resonances in atomic Bose–Einstein condensates. Phys. Rep. 315, 199–230 (1999).

    Article  ADS  Google Scholar 

  27. van Abeelen, F. A. & Verhaar, B. J. Time-dependent Feshbach resonance scattering and anomalous decay of a Na Bose–Einstein condensate. Phys. Rev. Lett. 83, 1550–1553 (1999).

    Article  ADS  Google Scholar 

  28. Dürr, S., Volz, T., Marte, A. & Rempe, G. Observation of molecules produced from a Bose–Einstein condensate. Phys. Rev. Lett. 92, 020406 (2004).

    Article  ADS  Google Scholar 

  29. Dürr, S., Volz, T. & Rempe, G. Dissociation of ultracold molecules with Feshbach resonances. Phys. Rev. A 70, 031601(R) (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Bernhardt and K. Predehl for providing light from their frequency comb. We acknowledge fruitful discussions with T. Bergeman, J. I. Cirac, D. Heinzen, C.-C. Tsai and T. Volz. This work was supported by the German Excellence Initiative through the Nanosystems Initiative Munich and by the Deutsche Forschungsgemeinschaft through SFB 631.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Dürr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, D., Lettner, M., Vo, C. et al. Control of a magnetic Feshbach resonance with laser light. Nature Phys 5, 339–342 (2009). https://doi.org/10.1038/nphys1232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing