Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electron–nuclear interaction in 13C nanotube double quantum dots

Abstract

For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence1,2,3 or, if controlled effectively, a resource enabling storage and retrieval of quantum information4,5,6,7. To investigate the effect of a controllable nuclear environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variable concentration of 13C (nuclear spin I=1/2) among the majority zero-nuclear-spin 12C atoms. We observe strong isotope effects in spin-blockaded transport, and from the magnetic field dependence estimate the hyperfine coupling in 13C nanotubes to be of the order of 100 μeV, two orders of magnitude larger than anticipated8,9. 13C-enhanced nanotubes are an interesting system for spin-based quantum information processing and memory: the 13C nuclei differ from those in the substrate, are naturally confined to one dimension, lack quadrupolar coupling and have a readily controllable concentration from less than one to 105 per electron.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanotube double dot with integrated charge sensor.
Figure 2: Spin blockade in a 13C nanotube double dot.
Figure 3: Contrasting magnetic field dependence of leakage current for 12C and 13C devices.
Figure 4: Hysteresis and fluctuations in leakage current.

Similar content being viewed by others

References

  1. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  ADS  Google Scholar 

  2. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

  3. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  ADS  Google Scholar 

  4. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  ADS  Google Scholar 

  5. Taylor, J. M., Marcus, C. M. & Lukin, M. D. Long-lived memory for mesoscopic quantum bits. Phys. Rev. Lett. 90, 206803 (2003).

    Article  ADS  Google Scholar 

  6. Gurudev Dutt, M. V. et al. Quantum register based on individual electronics and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  7. Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gwyat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    Article  ADS  Google Scholar 

  8. Yazyev, O. V. Hyperfine interactions in graphene and related carbon nanostructures. Nano Lett. 8, 1011–1015 (2008).

    Article  ADS  Google Scholar 

  9. Pennington, C. H. & Stenger, V. A. Nuclear magnetic resonance of C60 and fulleride superconductors. Rev. Mod. Phys. 68, 855–910 (1996).

    ADS  Google Scholar 

  10. Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    Article  ADS  Google Scholar 

  11. Hanson, R. et al. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    ADS  Google Scholar 

  12. Merkulov, I. A., Efros, Al. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

    Article  ADS  Google Scholar 

  13. Coish, W. A., Fischer, J. & Loss, D. Exponential decay in a spin bath. Phys. Rev. B 77, 125329 (2008).

    Article  ADS  Google Scholar 

  14. Biercuk, M. J., Garaj, S., Mason, N., Chow, J. M. & Marcus, C. M. Gate-defined quantum dots on carbon nanotubes. Nano Lett. 5, 1267–1271 (2005).

    Article  ADS  Google Scholar 

  15. Sapmaz, S., Meyer, C., Beliczynski, P., Jarillo-Herrero, P. & Kouwenhoven, L. P. Excited state spectroscopy in carbon nanotube double quantum dots. Nano Lett. 6, 1350–1355 (2006).

    Article  ADS  Google Scholar 

  16. Gräber, M. R. et al. Molecular states in carbon nanotube double quantum dots. Phys. Rev. B 74, 075427 (2006).

    Article  ADS  Google Scholar 

  17. Buitelaar, M. R. et al. Pauli spin blockade in carbon nanotube double quantum dots. Phys. Rev. B 77, 245439 (2008).

    Article  ADS  Google Scholar 

  18. Jørgensen, H. I. et al. Singlet-triplet physics and shell filling in carbon nanotube double quantum dots. Nature Phys. 4, 536–539 (2008).

    Article  Google Scholar 

  19. Liu, L. & Fan, S. Isotope labeling of carbon nanotubes and formation of 12C and 13C nanotube junctions. J. Am. Chem. Soc. 123, 11502–11503 (2001).

    Article  Google Scholar 

  20. Johnson, A. C., Petta, J. R., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Singlet-triplet spin blockade and charge sensing in a few-electron double quantum dot. Phys. Rev. B 72, 165308 (2005).

    Article  ADS  Google Scholar 

  21. Hu, Y. et al. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nature Nanotech. 2, 622–625 (2007).

    Article  ADS  Google Scholar 

  22. Jouravlev, O. N. & Nazarov, Y. V. Electron transport in a double quantum dot governed by a nuclear magnetic field. Phys. Rev. Lett. 96, 176804 (2006).

    Article  ADS  Google Scholar 

  23. Koppens, F. H. L. et al. Control and detection of singlet-triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005).

    Article  ADS  Google Scholar 

  24. Pfund, A., Shorubalko, I., Ensslin, K. & Leturcq, R. Suppression of spin relaxation in an InAs nanowire double quantum dot. Phys. Rev. Lett. 99, 036801 (2007).

    Article  ADS  Google Scholar 

  25. Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

    Article  ADS  Google Scholar 

  26. Baugh, J., Kitamura, Y., Ono, K. & Tarucha, S. Large nuclear Overhauser fields detected in vertically coupled double quantum dots. Phys. Rev. Lett. 99, 096804 (2007).

    Article  ADS  Google Scholar 

  27. Reilly, D. J. et al. Exchange control of nuclear spin diffusion in a double quantum dot. Preprint at <http://arxiv.org/abs/0803.3082> (2008).

  28. Rudner, M. S. & Levitov, L. S. Self-polarization and dynamical cooling of nuclear spins in double quantum dots. Phys. Rev. Lett. 99, 036602 (2007).

    Article  ADS  Google Scholar 

  29. Braunecker, B., Simon, P. & Loss, D. Nuclear magnetism and electronic order in 13C nanotubes. Preprint at <http://arxiv.org/abs/0808.1685> (2008).

  30. Farmer, D. B. & Gordon, R. G. Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization. Nano Lett. 6, 699–703 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Biercuk, K. Flensberg, L. Kouwenhoven, D. Loss, E. Rashba and O. Yazyev for discussions, and D. Reilly for experimental assistance. This work was supported in part by the National Science Foundation under grant no. NIRT 0210736 and the NSF-NNIN Program, ARO/iARPA, the Department of Defense, Harvard’s Center for Nanoscale Systems. H.O.H.C. acknowledges support from the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Marcus.

Supplementary information

Supplementary Information

Supplementary Information (PDF 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Churchill, H., Bestwick, A., Harlow, J. et al. Electron–nuclear interaction in 13C nanotube double quantum dots. Nature Phys 5, 321–326 (2009). https://doi.org/10.1038/nphys1247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing