Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A unified explanation of the Kadowaki–Woods ratio in strongly correlated metals

Abstract

Discoveries of ratios whose values are constant within broad classes of materials have led to many deep physical insights. The Kadowaki–Woods ratio (KWR; refs 12) compares the temperature dependence of a metal’s resistivity to that of its heat capacity, thereby probing the relationship between the electron–electron scattering rate and the renormalization of the electron mass. However, the KWR takes very different values in different materials3,4. Here we introduce a ratio, closely related to the KWR, that includes the effects of carrier density and spatial dimensionality and takes the same (predicted) value in organic charge-transfer salts, transition-metal oxides, heavy fermions and transition metals—despite the numerator and denominator varying by ten orders of magnitude. Hence, in these materials, the same emergent physics is responsible for the mass enhancement and the quadratic temperature dependence of the resistivity, and no exotic explanations of their KWRs are required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The standard Kadowaki–Woods plot.
Figure 2: Comparison of the ratio defined in equation (5) with experimental data.

Similar content being viewed by others

References

  1. Rice, M. J. Electron–electron scattering in transition metals. Phys. Rev. Lett. 20, 1439–1441 (1968).

    Article  ADS  Google Scholar 

  2. Kadowaki, K. & Woods, S. B. Universal relationship of the resistivity and specific heat in heavy-fermion compounds. Solid State Commun. 58, 507–509 (1986).

    Article  ADS  Google Scholar 

  3. Hussey, N. E. Non-generality of the Kadowaki–Woods ratio in correlated oxides. J. Phys. Soc. Japan 74, 1107–1110 (2005).

    Article  ADS  Google Scholar 

  4. Dressel, M., Grüner, G., Eldridge, J. E. & Williams, J. M. Optical properties of organic superconductors. Synth. Met. 85, 1503–1508 (1997).

    Article  Google Scholar 

  5. Nozières, P. & Pines, D. The Theory of Quantum Liquids (Perseus Books, 1999).

    MATH  Google Scholar 

  6. Miyake, K., Matsuura, T. & Varma, C. M. Relation between resistivity and effective mass in heavy-fermion and A15 compounds. Solid State Commun. 71, 1149–1153 (1989).

    Article  ADS  Google Scholar 

  7. Li, S. Y. et al. Giant electron–electron scattering in the Fermi-liquid state of Na0.7CoO2 . Phys. Rev. Lett. 93, 056401 (2004).

    Article  ADS  Google Scholar 

  8. Powell, B. J. & McKenzie, R. H. Strong electron correlations in superconducting organic charge transfer salts. J. Phys. Condens. Matter 18, R827–R866 (2006).

    Article  ADS  Google Scholar 

  9. Yamada, K. & Yosida, K. Fermi liquid theory on the basis of the periodic Anderson hamiltonian. Prog. Theor. Phys. 76, 621–638 (1986).

    Article  ADS  Google Scholar 

  10. Auerbach, A. & Levin, K. Universal low-temperature properties of normal heavy-fermion systems. J. Appl. Phys. 61, 3162–3167 (1987).

    Article  ADS  Google Scholar 

  11. Coleman, P. Constrained quasiparticles and conduction in heavy-fermion systems. Phys. Rev. Lett. 59, 1026–1029 (1987).

    Article  ADS  Google Scholar 

  12. Li, T. C. & Rasul, J. W. Gutzwiller dynamic susceptibility: Consequences for the transport properties of transition metals. Phys. Rev. B 39, 4630–4633 (1989).

    Article  ADS  Google Scholar 

  13. Kontani, H. Generalized Kadowaki–Woods relation in heavy fermion systems with orbital degeneracy. J. Phys. Soc. Japan 73, 515–518 (2004).

    Article  ADS  Google Scholar 

  14. Strack, Ch. et al. Resistivity studies under hydrostatic pressure on a low-resistance variant of the quasi-two-dimensional organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br: Search for intrinsic scattering contributions. Phys. Rev. B 72, 054511 (2005).

    Article  ADS  Google Scholar 

  15. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  16. Hewson, A. C. The Kondo Problem To Heavy Fermions (Cambridge Univ. Press, 1997).

    Google Scholar 

  17. Mahan, G. D. Many-Particle Physics 2nd edn (Plenum Press, 1990).

    Book  Google Scholar 

  18. Maebashi, H. & Fukuyama, H. Electrical conductivity of interacting fermions II: Effects of normal scattering process in the presence of Umklapp scattering process. J. Phys. Soc. Japan 67, 242–251 (1998).

    Article  ADS  Google Scholar 

  19. Luttinger, J. M. Analytic properties of single-particle propagators for many-fermion systems. Phys. Rev. 121, 942–949 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  20. Giuliani, G. & Vignale, G. Quantum Theory Of The Electron Liquid (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  21. Collan, H. K., Krusius, M. & Pickett, G. R. Specific heat of antinomy and bismuth between 0.03 and 0.8 K. Phys. Rev. B 1, 2888–2895 (1969).

    Article  ADS  Google Scholar 

  22. Chopra, V., Ray, R. K. & Bhagat, S. M. Low-temperature resistivity of Bi and its alloys. Phys. Status Solidi A 4, 205–214 (1971).

    Article  ADS  Google Scholar 

  23. Terashima, T. et al. Resistivity, Hall effect, and Shubnikov–de Haas oscillations in CeNiSn. Phys. Rev. B 66, 075127 (2002).

    Article  ADS  Google Scholar 

  24. Byczuk, K. et al. Kinks in the dispersion of strongly correlated electrons. Nature Phys. 3, 168–171 (2007).

    Article  ADS  Google Scholar 

  25. Tsujii, N., Kontani, H. & Yoshimura, K. Universality in heavy fermion systems with general degeneracy. Phys. Rev. Lett. 94, 057201 (2005).

    Article  ADS  Google Scholar 

  26. Torikachvili, M. S. et al. Six closely related YbT2Zn20 (T=Fe, Co, Ru, Rh, Os, Ir) heavy fermion compounds with large local moment degeneracy. Proc. Natl Acad. Sci. 104, 9960–9963 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank J. Castro, N. Hussey, M. Kennett, R. McKenzie, J. Merino, G. Notley, M. Smith, T. Stace, C. Varma, A. White and J. Wosnitza for their helpful comments. This research was supported under the Australian Research Council’s (ARC’s) Discovery Projects funding scheme (project DP0878523). B.J.P. is the recipient of an ARC Queen Elizabeth II Fellowship (DP0878523).

Author information

Authors and Affiliations

Authors

Contributions

This project was planned and led by B.J.P. All authors contributed equally to the derivation. The analysis of the previously published experimental data was carried out by A.C.J. The paper was written by B.J.P. with significant input from A.C.J. and J.O.F.

Corresponding author

Correspondence to B. J. Powell.

Supplementary information

Supplementary Information

Supplementary Information (PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacko, A., Fjærestad, J. & Powell, B. A unified explanation of the Kadowaki–Woods ratio in strongly correlated metals. Nature Phys 5, 422–425 (2009). https://doi.org/10.1038/nphys1249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing