Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Signatures of universal four-body phenomena and their relation to the Efimov effect

Abstract

The problem of three interacting quantal bodies, in its various guises, seems deceptively simple, but it has also provided striking surprises, such as the Efimov effect1,2, which was confirmed experimentally3 only more than 35 years after its initial prediction. The importance of understanding the three-body problem was magnified by the explosion of ultracold science following the formation of Bose–Einstein condensates in 1995 (ref. 4). For ultracold gases, three-body recombination (where B+B+B collide to form B2+B) was quickly recognized as the main loss process and connected5,6,7,8 with the Efimov effect in the ‘universal’ realm of very large atom–atom scattering lengths a. The problem of four interacting bodies challenges theory far more than the three-body quantal problem. Some key insights have been achieved in recent years9,10,11,12,13,14,15,16. Here, we present a major extension of our understanding of the four-body problem in the universal large-a regime. Our results support a previous conjecture10 that two resonantly bound four-body states are attached to every universal three-body Efimov resonance and they improve the calculated accuracy of their universal properties. A hitherto unanalysed feature found in ultracold-gas experiments3 supports this universal prediction, and it provides the first evidence of four-body recombination (where B+B+B+B form B3+B, B2+B+B or B2+B2).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectrum of energies and geometric structure of four-boson states and their connection to the Efimov physics.
Figure 2: Effective four-boson potentials for converging at large R to the atom–trimer thresholds.
Figure 3: Evidence of signatures of four-boson states through four-body recombination.

Similar content being viewed by others

References

  1. Efimov, V. Weakly bound states of three resonantly interacting particles. Yad. Fiz. 12, 1080–1091 (1970); Sov. J. Nucl. Phys. 12, 589-595 (1971).

  2. Efimov, V. Energy levels of three resonantly interacting particles. Nucl. Phys. A 210, 157–188 (1973).

    Article  ADS  Google Scholar 

  3. Kraemer, T. et al. Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 315–318 (2006).

    Article  ADS  Google Scholar 

  4. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  Google Scholar 

  5. Esry, B. D., Greene, C. H. & Burke, J. P. Jr. Recombination of three atoms in the ultracold limit. Phys. Rev. Lett. 83, 1751–1754 (1999).

    Article  ADS  Google Scholar 

  6. Nielsen, E. & Macek, J. H. Low-energy recombination of identical bosons by three-body collisions. Phys. Rev. Lett. 83, 1566–1569 (1999).

    Article  ADS  Google Scholar 

  7. Bedaque, P. F., Braaten, E. & Hammer, H.-W. Three-body recombination in Bose gases with large scattering length. Phys. Rev. Lett. 85, 908–911 (2000).

    Article  ADS  Google Scholar 

  8. Braaten, E. & Hammer, H. W. Universality in few-body systems with large scattering length. Phys. Rep. 428, 259–390 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  9. Platter, L., Hammer, H. & Meißner, U. Four-boson system with short-range interactions. Phys. Rev. A 70, 52101 (2004).

    Article  ADS  Google Scholar 

  10. Hammer, H. W. & Platter, L. Universal properties of the four-body system with large scattering length. Eur. Phys. J. A 32, 113–120 (2007).

    Article  ADS  Google Scholar 

  11. Yamashita, M. T., Tomio, L., Delfino, A. & Frederico, T. Four-boson scale near a Feshbach resonance. Europhys. Lett. 75, 555–561 (2006).

    Article  ADS  Google Scholar 

  12. Hanna, G. J. & Blume, D. Energetics and structural properties of three-dimensional bosonic clusters near threshold. Phys. Rev. A 74, 063604 (2006).

    Article  ADS  Google Scholar 

  13. Petrov, D. S., Salomon, C. & Shlyapnikov, G. V. Weakly bound dimers of fermionic atoms. Phys. Rev. Lett. 93, 090404 (2004).

    Article  ADS  Google Scholar 

  14. von Stecher, J. & Greene, C. H. Spectrum and dynamics of the BCS-BEC crossover from a few-body perspective. Phys. Rev. Lett. 99, 090402 (2007).

    Article  ADS  Google Scholar 

  15. D’Incao, J. P., Rittenhouse, S. T., Mehta, N. P. & Greene, C. H. Dimer–dimer collisions at finite energies in two-component Fermi gases. Phys. Rev. A 79, 030501 (2009).

    Article  ADS  Google Scholar 

  16. Wang, Y. & Esry, B. D. Efimov trimer formation via ultracold four-body recombination. Phys. Rev. Lett. 102, 133201 (2009).

    Article  ADS  Google Scholar 

  17. Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1362 (2006).

    Article  ADS  Google Scholar 

  18. Macek, J. H. Properties of autoionizing states of He. J. Phys. B 1, 831–843 (1968).

    Article  ADS  Google Scholar 

  19. von Stecher, J. Trapped Ultracold Atoms With Tunable Interactions. PhD thesis, Univ. of Colorado, Boulder (2008); <http://jilawww.colorado.edu/pubs/thesis/vonstecher/>.

  20. Coelho, H. T. & Hornos, J. E. Proof of basic inequalities in the hyperspherical formalism for the N-body problem. Phys. Rev. A 43, 6379–6381 (1991).

    Article  ADS  Google Scholar 

  21. Suzuki, Y. & Varga, K. Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems. (Springer, 1998).

    MATH  Google Scholar 

  22. D’Incao, J. P. & Esry, B. D. Manifestations of the Efimov effect for three identical bosons. Phys. Rev. A 72, 032710 (2005).

    Article  ADS  Google Scholar 

  23. Esry, B. D. & Greene, C. H. Quantum physics: A ménage à trois laid bare. Nature 440, 289–290 (2006).

    Article  ADS  Google Scholar 

  24. D’Incao, J. P., Greene, C. H. & Esry, B. D. The short-range three-body phase and other issues impacting the observation of Efimov physics in ultracold quantum gases. J. Phys. B 42, 044016 (2009).

    Article  ADS  Google Scholar 

  25. Danilov, G. S. On the three-body problem in the case of short-range forces. Zh. Eksp. Teor. Fiz. 40, 498–507 (1961); Sov. Phys. JETP 13, 349–355 (1961).

  26. Knoop, S. et al. Observation of an Efimov-like trimer resonance in ultracold atom–dimer scattering. Nature Phys. 5, 227–230 (2009).

    Article  ADS  Google Scholar 

  27. Amado, R. D. & Greenwood, F. C. There is no Efimov effect for four or more particles. Phys. Rev. D 7, 2517–2519 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  28. Jonsell, S. Efimov states for systems with negative scattering lengths. Europhys. Lett. 76, 8–14 (2006).

    Article  ADS  Google Scholar 

  29. Lee, M. D., Koehler, T. & Julienne, P. S. Excited Thomas–Efimov levels in ultracold gases. Phys. Rev. A 76, 012720 (2007).

    Article  ADS  Google Scholar 

  30. Massignan, P. & Stoof, H. T. C. Efimov states near a Feshbach resonance. Phys. Rev. A 78, 030701 (2008).

    Article  ADS  Google Scholar 

  31. Mehta, N. P., Rittenhouse, S. T., D’Incao, J. P., von Stecher, J. & Greene, C. H. A general theoretical description of N-body recombination. Preprint at <http://arxiv.org/abs/0903.4145> (2009).

  32. Ferlaino, F. et al. Evidence for universal four-body states tied to an Efimov trimer. Phys. Rev. Lett. 102, 140401 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation. We are indebted to N. Mehta and S. Rittenhouse for extensive discussions and for access to their unpublished derivations before publication. We also thank F. Ferlaino, S. Knoop, H.-C. Nägerl and R. Grimm from the Innsbruck group for discussions about their experimental data.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the manuscript.

Corresponding author

Correspondence to Chris H. Greene.

Supplementary information

Supplementary Information

Supplementary Information (PDF 477 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Stecher, J., D’Incao, J. & Greene, C. Signatures of universal four-body phenomena and their relation to the Efimov effect. Nature Phys 5, 417–421 (2009). https://doi.org/10.1038/nphys1253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing