Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-fidelity transmission of entanglement over a high-loss free-space channel

Abstract

Quantum entanglement enables tasks not possible in classical physics. Many quantum communication protocols1 require the distribution of entangled states between distant parties. Here, we experimentally demonstrate the successful transmission of an entangled photon pair over a 144 km free-space link. The received entangled states have excellent, noise-limited fidelity, even though they are exposed to extreme attenuation dominated by turbulent atmospheric effects. The total channel loss of 64 dB corresponds to the estimated attenuation regime for a two-photon satellite communication scenario. We confirm that the received two-photon states are still highly entangled by violating the Clauser–Horne–Shimony–Holt inequality by more than five standard deviations. From a fundamental point of view, our results show that the photons are subject to virtually no decoherence during their 0.5-ms-long flight through air, which is encouraging for future worldwide quantum communication scenarios.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Satellite image (NASA World Wind) of the Canary Islands of Tenerife and La Palma and overview of the experimental scheme.
Figure 2: Coincidence histograms and the respective accumulated coincidence events for measurements on two different Bell states.
Figure 3: Scan of the phase ϕ of the entangled two-photon state in one measurement night.

Similar content being viewed by others

References

  1. Gisin, N. & Thew, R. Quantum communication. Nature Photon. 1, 165–171 (2007).

    Article  ADS  Google Scholar 

  2. Takesue, H. et al. Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors. Nature Photon. 1, 343–348 (2007).

    Article  ADS  Google Scholar 

  3. Hübel, H. et al. A high-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber. Opt. Express 15, 7853–7862 (2007).

    Article  ADS  Google Scholar 

  4. Honjo, T. et al. Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors. Opt. Express 15, 13957–13964 (2007).

    Article  ADS  Google Scholar 

  5. Zhang, Q. et al. Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors. Opt. Express 16, 5776–5781 (2008).

    Article  ADS  Google Scholar 

  6. Aspelmeyer, M., Jennewein, T., Pfennigbauer, M., Leeb, W. & Zeilinger, A. Long-distance quantum communication with entangled photons using satellites. IEEE J. Sel. Top. Quant. Electron. 9, 1541–1551 (2003).

    Article  ADS  Google Scholar 

  7. Kurtsiefer, C. et al. A step towards global quantum key distribution. Nature 419, 450 (2002).

    Article  ADS  Google Scholar 

  8. Buttler, W. T. et al. Daylight quantum key distribution over 1.6 km. Phys. Rev. Lett. 84, 5652–5655 (2000).

    Article  ADS  Google Scholar 

  9. Rarity, J. G., Tapster, P. R. & Gorman, P. M. Secure free-space key exchange to 1.9 km and beyond. J. Mod. Opt. 48, 1887–1901 (2001).

    ADS  Google Scholar 

  10. Bienfang, J. et al. Quantum key distribution with 1.25 Gbps clock synchronization. Opt. Express 12, 2011–2016 (2004).

    Article  ADS  Google Scholar 

  11. Schmitt-Manderbach, T. et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 10504 (2007).

    Article  ADS  Google Scholar 

  12. Aspelmeyer, M. et al. Long-distance free-space distribution of quantum entanglement. Science 301, 621–623 (2003).

    Article  ADS  Google Scholar 

  13. Peng, C. et al. Experimental free-space distribution of entangled photon pairs over 13 km: Towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005).

    Article  ADS  Google Scholar 

  14. Resch, K. et al. Distributing entanglement and single photons through an intra-city, free-space quantum channel. Opt. Express 13, 202–209 (2005).

    Article  ADS  Google Scholar 

  15. Marcikic, I., Lamas-Linares, A. & Kurtsiefer, C. Free-space quantum key distribution with entangled photons. Appl. Phys. Lett. 89, 101122 (2006).

    Article  ADS  Google Scholar 

  16. Ursin, R. et al. Entanglement-based quantum communication over 144 km. Nature Phys. 3, 481–486 (2007).

    Article  ADS  Google Scholar 

  17. Clauser, J., Horne, M., Shimony, A. & Holt, R. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  18. Mattle, K., Weinfurter, H., Kwiat, P. G. & Zeilinger, A. Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996).

    Article  ADS  Google Scholar 

  19. Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G. & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003).

    Article  ADS  Google Scholar 

  20. Bouwmeester, D., Ekert, A. & Zeilinger, A. The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer, 2001).

    MATH  Google Scholar 

  21. Boileau, J., Gottesman, D., Laflamme, R., Poulin, D. & Spekkens, R. Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 17901 (2004).

    Article  ADS  Google Scholar 

  22. Ma, X., Fung, C. & Lo, H. Quantum key distribution with entangled photon sources. Phys. Rev. A 76, 12307 (2007).

    Article  ADS  Google Scholar 

  23. Kim, T., Fiorentino, M. & Wong, F. N. C. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys. Rev. A 73, 12316 (2006).

    Article  ADS  Google Scholar 

  24. Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T. & Zeilinger, A. A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007).

    Article  ADS  Google Scholar 

  25. Bennett, C. H., Brassard, G. & Mermin, N. D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  26. Armengol, J. M. P. et al. Quantum communications at ESA: Towards a space experiment on the ISS. Acta Astronaut. 63, 165–178 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to H. Weinfurter, J. G. Rarity, T. Schmitt-Manderbach, C. Barbieri, F. Sanchez, A. Alonso, J. Perdigues and Z. Sodnik, T. Augusteijn and the staff of the Nordic Optical Telescope in La Palma for their support at the trial sites. This work was supported by ESA under the General Studies Programme (No. 18805/04/NL/HE), the European Commission through Project QAP (No. 015846), the DTO-Funded US Army Research Office, the Austrian Science Foundation (FWF) under project number SFB1520 and the ASAP-Programme of the Austrian Space Agency (FFG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessandro Fedrizzi or Anton Zeilinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedrizzi, A., Ursin, R., Herbst, T. et al. High-fidelity transmission of entanglement over a high-loss free-space channel. Nature Phys 5, 389–392 (2009). https://doi.org/10.1038/nphys1255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing