Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Physical forces during collective cell migration

Abstract

Fundamental biological processes including morphogenesis, tissue repair and tumour metastasis require collective cell motions1,2,3, and to drive these motions cells exert traction forces on their surroundings4. Current understanding emphasizes that these traction forces arise mainly in ‘leader cells’ at the front edge of the advancing cell sheet5,6,7,8,9. Our data are contrary to that assumption and show for the first time by direct measurement that traction forces driving collective cell migration arise predominately many cell rows behind the leading front edge and extend across enormous distances. Traction fluctuations are anomalous, moreover, exhibiting broad non-Gaussian distributions characterized by exponential tails10,11,12. Taken together, these unexpected findings demonstrate that although the leader cell may have a pivotal role in local cell guidance, physical forces that it generates are but a small part of a global tug-of-war involving cells well back from the leading edge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Traction forces generated by a collectively migrating cell sheet.
Figure 2: Traction force distributions at different distances from the leading edge.
Figure 3: The state of stress of the whole expanding colony is set by a global tug-of-war.
Figure 4: Time fluctuations of tractions show cell–cell force transmission.

Similar content being viewed by others

References

  1. Lecaudey, V. & Gilmour, D. Organizing moving groups during morphogenesis. Curr. Opin. Cell Biol. 18, 102–107 (2006).

    Article  Google Scholar 

  2. Martin, P. & Parkhurst, S. M. Parallels between tissue repair and embryo morphogenesis. Development 131, 3021–3034 (2004).

    Article  Google Scholar 

  3. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Rev. Cancer 3, 362–374 (2003).

    Article  Google Scholar 

  4. du Roure, O. et al. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102, 2390–2395 (2005).

    Article  ADS  Google Scholar 

  5. Vaughan, R. B. & Trinkaus, J. P. Movements of epithelial cell sheets in vitro. J. Cell Sci. 1, 407–413 (1966).

    Google Scholar 

  6. Omelchenko, T. et al. Rho-dependent formation of epithelial ‘leader’ cells during wound healing. Proc. Natl Acad. Sci. USA 100, 10788–10793 (2003).

    Article  ADS  Google Scholar 

  7. Friedl, P., Hegerfeldt, Y. & Tusch, M. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol. 48, 441–449 (2004).

    Article  Google Scholar 

  8. Gov, N. S. Collective cell migration patterns: Follow the leader. Proc. Natl Acad. Sci. USA 104, 15970–15971 (2007).

    Article  ADS  Google Scholar 

  9. Poujade, M. et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104, 15988–15993 (2007).

    Article  ADS  Google Scholar 

  10. Liu, C. H. et al. Force fluctuations in bead packs. Science 269, 513–515 (1995).

    Article  ADS  Google Scholar 

  11. O’Hern, C. S., Langer, S. A., Liu, A. J. & Nagel, S. R. Force distributions near jamming and glass transitions. Phys. Rev. Lett. 86, 111–114 (2001).

    Article  ADS  Google Scholar 

  12. Ostojic, S., Somfai, E. & Nienhuis, B. Scale invariance and universality of force networks in static granular matter. Nature 439, 828–830 (2006).

    Article  ADS  Google Scholar 

  13. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: A physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  Google Scholar 

  14. Keren, K. et al. Mechanism of shape determination in motile cells. Nature 453, 475–480 (2008).

    Article  ADS  Google Scholar 

  15. Hu, K. et al. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    Article  ADS  Google Scholar 

  16. Giannone, G. et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561–575 (2007).

    Article  Google Scholar 

  17. Beningo, K. A. et al. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888 (2001).

    Article  Google Scholar 

  18. Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    Article  ADS  Google Scholar 

  19. Montell, D. J. Morphogenetic cell movements: Diversity from modular mechanical properties. Science 322, 1502–1505 (2008).

    Article  ADS  Google Scholar 

  20. Matsubayashi, Y., Ebisuya, M., Honjoh, S. & Nishida, E. ERK activation propagates in epithelial cell sheets and regulates their migration during wound healing. Curr. Biol. 14, 731–735 (2004).

    Article  Google Scholar 

  21. Bindschadler, M. & McGrath, J. L. Sheet migration by wounded monolayers as an emergent property of single-cell dynamics. J. Cell Sci. 120, 876–884 (2007).

    Article  Google Scholar 

  22. Holmes, S. J. The behaviour of the epidermis of amphibians when cultivated outside the body. J. Exp. Zool. 17, 281–295 (1914).

    Article  Google Scholar 

  23. Hutson, M. S. et al. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300, 145–149 (2003).

    Article  ADS  Google Scholar 

  24. Farooqui, R. & Fenteany, G. Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J. Cell Sci. 118, 51–63 (2005).

    Article  Google Scholar 

  25. Butler, J. P., Tolic-Norrelykke, I. M., Fabry, B. & Fredberg, J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282, C595–C605 (2002).

    Article  Google Scholar 

  26. Sabass, B., Gardel, M. L., Waterman, C. M. & Schwarz, U. S. High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94, 207–220 (2008).

    Article  Google Scholar 

  27. Del Alamo, J. C. et al. Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. Proc. Natl Acad. Sci. USA 104, 13343–13348 (2007).

    Article  ADS  Google Scholar 

  28. Merkel, R., Kirchgessner, N., Cesa, C. M. & Hoffmann, B. Cell force microscopy on elastic layers of finite thickness. Biophys. J. 93, 3314–3323 (2007).

    Article  ADS  Google Scholar 

  29. Fenteany, G., Janmey, P. A. & Stossel, T. P. Signaling pathways and cell mechanics involved in wound closure by epithelial cell sheets. Curr. Biol. 10, 831–838 (2000).

    Article  Google Scholar 

  30. Goffin, J. M. et al. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell Biol. 172, 259–268 (2006).

    Article  Google Scholar 

  31. Saez, A., Buguin, A., Silberzan, P. & Ladoux, B. Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys. J. 89, L52–L54 (2005).

    Article  Google Scholar 

  32. Gov, N. S. Modeling the size distribution of focal adhesions. Biophys. J. 91, 2844–2847 (2006).

    Article  ADS  Google Scholar 

  33. Zegers, M. M. et al. Pak1 and PIX regulate contact inhibition during epithelial wound healing. EMBO J. 22, 4155–4165 (2003).

    Article  Google Scholar 

  34. Shraiman, B. I. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl Acad. Sci. USA 102, 3318–3323 (2005).

    Article  ADS  Google Scholar 

  35. Van Hecke, M. Granular matter: A tale of tails. Nature 435, 1041–1042 (2005).

    Article  ADS  Google Scholar 

  36. Coppersmith, S. N. et al. Model for force fluctuations in bead packs. Phys. Rev. E 53, 4673–4685 (1996).

    ADS  Google Scholar 

  37. Wang, N. et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282, C606–C616 (2002).

    Article  Google Scholar 

  38. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell. Motil. Cytoskeleton 60, 24–34 (2005).

    Article  Google Scholar 

  39. Gui, L. & Wereley, S. T. A correlation-based continuous window-shift technique to reduce the peak-locking effect in digital PIV image evaluation. Exp. Fluids 32, 506–517 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Gavara, R. Sunyer and C. Y. Park for experimental support and D. Tschumperlin and members of the Fredberg laboratory for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.T., J.P.B. and J.J.F. designed research. X.T. and M.R.W. carried out experiments. J.P.B and X.T conducted theoretical analysis. T.E.A., D.A.W. and E.M. contributed to design protocols and data interpretation. X.T., J.P.B. and J.J.F. wrote the manuscript. J.P.B. and J.J.F. oversaw the project.

Corresponding authors

Correspondence to Xavier Trepat or Jeffrey J. Fredberg.

Supplementary information

Supplementary Information

Supplementary Information (PDF 560 kb)

Supplementary Information

Supplementary Movie 1 (MOV 2870 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1900 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trepat, X., Wasserman, M., Angelini, T. et al. Physical forces during collective cell migration. Nature Phys 5, 426–430 (2009). https://doi.org/10.1038/nphys1269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing