Abstract
The physics of interacting nuclear spins arranged on a crystalline lattice is generally described using a thermodynamic framework1 and the concept of spin temperature. In the past, experimental studies in bulk solid-state systems have proven this concept to be not only correct2,3 but also vital for the understanding of experimental observations4. Here we show, using demagnetization experiments, that the concept of spin temperature in general fails to describe the mesoscopic nuclear-spin ensemble of a quantum dot. We associate the observed deviations from a thermal spin state with the presence of strong quadrupolar interactions within the quantum dot, which cause significant anharmonicity in the spectrum of the nuclear spins. Strain-induced, inhomogeneous quadrupolar shifts also lead to a complete suppression of angular-momentum exchange between the nuclear-spin ensemble and its environment, resulting in nuclear-spin relaxation times exceeding an hour. Remarkably, the position-dependent axes of the quadrupolar interactions render magnetic-field sweeps inherently non-adiabatic, thereby causing an irreversible loss of nuclear-spin polarization.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Goldman, M. Spin Temperature and Nuclear Magnetic Resonance in Solids (Oxford Univ. Press, 1970).
Abragam, A. & Proctor, W. G. Experiments on spin temperature. Phys. Rev. 106, 160–161 (1957).
Slichter, C. P., Holton, W. C. & Fellow, A. P. S. Adiabatic demagnetization in a rotating reference system. Phys. Rev. 122, 1701–1708 (1961).
Purcell, E. M. & Pound, R. V. A nuclear spin system at negative temperature. Phys. Rev. 81, 279–280 (1951).
Meier, F. Optical Orientation (North-Holland, 1984).
Dyakonov, M. I. & Perel, V. I. Optical orientation in a system of electrons and lattice nuclei in semiconductors—theory. Sov. Phys. JETP 38, 177–183 (1974).
Paget, D. Optical-detection of NMR in high-purity GaAs—direct study of the relaxation of nuclei close to shallow donors. Phys. Rev. B 25, 4444–4451 (1982).
Kalevich, V. K., Kul’kov, V. D. & Fleisher, V. G. Onset of a nuclear polarization front due to optical spin orientation in a semiconductor. JETP Lett. 35, 20–24 (1982).
Maletinsky, P., Badolato, A. & Imamoglu, A. Dynamics of quantum dot nuclear spin polarization controlled by a single electron. Phys. Rev. Lett. 99, 056804 (2007).
Gammon, D. et al. Nuclear spectroscopy in single quantum dots: Nanoscopic Raman scattering and nuclear magnetic resonance. Science 277, 85–88 (1997).
Eble, B. et al. Dynamic nuclear polarization of a single charge-tunable InAs/GaAs quantum dot. Phys. Rev. B 74, 081306 (2006).
Maletinsky, P., Lai, C. W., Badolato, A. & Imamoglu, A. Nonlinear dynamics of quantum dot nuclear spins. Phys. Rev. B 75, 035409 (2007).
Lai, C. W., Maletinsky, P., Badolato, A. & Imamoglu, A. Knight-field-enabled nuclear spin polarization in single quantum dots. Phys. Rev. Lett. 96, 167403 (2006).
Overhauser, A. W. Polarization of nuclei in metals. Phys. Rev. 92, 411–415 (1953).
Malinowski, A., Brand, M. A. & Harley, R. T. Nuclear effects in ultrafast quantum-well spin-dynamics. Physica E 10, 13–16 (2001).
Braun, P.-F., Urbaszek, B., Amand, T. & Marie, X. Bistability of the nuclear polarization created through optical pumping in In1−xGaxAs quantum dots. Phys. Rev. B 74, 245306 (2006).
Dzhioev, R. I. & Korenev, V. L. Stabilization of the electron–nuclear spin orientation in quantum dots by the nuclear quadrupole interaction. Phys. Rev. Lett. 99, 037401 (2007).
Maletinsky, P. Polarization and Manipulation of a Mesoscopic Nuclear Spin Ensemble Using a Single Confined Electron Spin. PhD thesis, ETH Zürich (2008).
Deng, C. X. & Hu, X. D. Selective dynamic nuclear spin polarization in a spin-blocked double dot. Phys. Rev. B 71, 033307 (2005).
Slichter, C. P. Principles of Magnetic Resonance (Springer, 1996).
Williamson, A. J. & Zunger, A. InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures. Phys. Rev. B 59, 15819–15824 (1999).
Sundfors, R. K., Tsui, R. K. & Schwab, C. Experimental gradient elastic tensors: Measurement in I–VII semiconductors and the ionic contribution in III–V and I–VII compounds. Phys. Rev. B 13, 4504–4508 (1976).
Rhim, W.-K., Pines, A. & Waugh, J. S. Violation of the spin-temperature hypothesis. Phys. Rev. Lett. 25, 218–220 (1970).
Churchill, H. O. H. et al. Electron–nuclear interaction in 13C nanotube double quantum. Nature Phys. 5, doi:10.1038/NPHYS1247 (2008).
Feng, D. H., Akimov, I. A. & Henneberger, F. Nonequilibrium nuclear–electron spin dynamics in semiconductor quantum dots. Phys. Rev. Lett. 99, 036604 (2007).
Belhadj, T. et al. Optically monitored nuclear spin dynamics in individual GaAs quantum dots grown by droplet epitaxy. Phys. Rev. B 78, 205325 (2008).
Simon, P. & Loss, D. Nuclear spin ferromagnetic phase transition in an interacting two dimensional electron gas. Phys. Rev. Lett. 98, 156401 (2007).
Vasanelli, A., Ferreira, R. & Bastard, G. Continuous absorption background and decoherence in quantum dots. Phys. Rev. Lett. 89, 216804 (2002).
Acknowledgements
We thank A. Högele, J. Elzerman and S. D. Huber for help with the manuscript, and T. Amand and O. Krebs for discussions. We acknowledge A. Badolato for sample growth. This work is supported by NCCR-Nanoscience and an ERC Advanced Investigator Grant.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Maletinsky, P., Kroner, M. & Imamoglu, A. Breakdown of the nuclear-spin-temperature approach in quantum-dot demagnetization experiments. Nature Phys 5, 407–411 (2009). https://doi.org/10.1038/nphys1273
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1273
This article is cited by
-
The squeezed dark nuclear spin state in lead halide perovskites
Nature Communications (2023)
-
The Exotic Thermodynamic States and Negative Absolute Temperatures
Journal of Low Temperature Physics (2022)
-
Fundamental limits of electron and nuclear spin qubit lifetimes in an isolated self-assembled quantum dot
npj Quantum Information (2021)
-
Ultra-deep optical cooling of coupled nuclear spin-spin and quadrupole reservoirs in a GaAs/(Al,Ga)As quantum well
Communications Physics (2021)
-
Dynamical coupling between a nuclear spin ensemble and electromechanical phonons
Nature Communications (2018)


