Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Breakdown of the nuclear-spin-temperature approach in quantum-dot demagnetization experiments

Abstract

The physics of interacting nuclear spins arranged on a crystalline lattice is generally described using a thermodynamic framework1 and the concept of spin temperature. In the past, experimental studies in bulk solid-state systems have proven this concept to be not only correct2,3 but also vital for the understanding of experimental observations4. Here we show, using demagnetization experiments, that the concept of spin temperature in general fails to describe the mesoscopic nuclear-spin ensemble of a quantum dot. We associate the observed deviations from a thermal spin state with the presence of strong quadrupolar interactions within the quantum dot, which cause significant anharmonicity in the spectrum of the nuclear spins. Strain-induced, inhomogeneous quadrupolar shifts also lead to a complete suppression of angular-momentum exchange between the nuclear-spin ensemble and its environment, resulting in nuclear-spin relaxation times exceeding an hour. Remarkably, the position-dependent axes of the quadrupolar interactions render magnetic-field sweeps inherently non-adiabatic, thereby causing an irreversible loss of nuclear-spin polarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Demagnetization of QD nuclear spins.
Figure 2: Irreversibility and hysteresis in the demagnetization experiment.
Figure 3: Modelling of the demagnetization experiment.

Similar content being viewed by others

References

  1. Goldman, M. Spin Temperature and Nuclear Magnetic Resonance in Solids (Oxford Univ. Press, 1970).

    Google Scholar 

  2. Abragam, A. & Proctor, W. G. Experiments on spin temperature. Phys. Rev. 106, 160–161 (1957).

    Article  ADS  Google Scholar 

  3. Slichter, C. P., Holton, W. C. & Fellow, A. P. S. Adiabatic demagnetization in a rotating reference system. Phys. Rev. 122, 1701–1708 (1961).

    Article  ADS  Google Scholar 

  4. Purcell, E. M. & Pound, R. V. A nuclear spin system at negative temperature. Phys. Rev. 81, 279–280 (1951).

    Article  ADS  Google Scholar 

  5. Meier, F. Optical Orientation (North-Holland, 1984).

    Google Scholar 

  6. Dyakonov, M. I. & Perel, V. I. Optical orientation in a system of electrons and lattice nuclei in semiconductors—theory. Sov. Phys. JETP 38, 177–183 (1974).

    ADS  Google Scholar 

  7. Paget, D. Optical-detection of NMR in high-purity GaAs—direct study of the relaxation of nuclei close to shallow donors. Phys. Rev. B 25, 4444–4451 (1982).

    Article  ADS  Google Scholar 

  8. Kalevich, V. K., Kul’kov, V. D. & Fleisher, V. G. Onset of a nuclear polarization front due to optical spin orientation in a semiconductor. JETP Lett. 35, 20–24 (1982).

    ADS  Google Scholar 

  9. Maletinsky, P., Badolato, A. & Imamoglu, A. Dynamics of quantum dot nuclear spin polarization controlled by a single electron. Phys. Rev. Lett. 99, 056804 (2007).

    Article  ADS  Google Scholar 

  10. Gammon, D. et al. Nuclear spectroscopy in single quantum dots: Nanoscopic Raman scattering and nuclear magnetic resonance. Science 277, 85–88 (1997).

    Article  Google Scholar 

  11. Eble, B. et al. Dynamic nuclear polarization of a single charge-tunable InAs/GaAs quantum dot. Phys. Rev. B 74, 081306 (2006).

    Article  ADS  Google Scholar 

  12. Maletinsky, P., Lai, C. W., Badolato, A. & Imamoglu, A. Nonlinear dynamics of quantum dot nuclear spins. Phys. Rev. B 75, 035409 (2007).

    Article  ADS  Google Scholar 

  13. Lai, C. W., Maletinsky, P., Badolato, A. & Imamoglu, A. Knight-field-enabled nuclear spin polarization in single quantum dots. Phys. Rev. Lett. 96, 167403 (2006).

    Article  ADS  Google Scholar 

  14. Overhauser, A. W. Polarization of nuclei in metals. Phys. Rev. 92, 411–415 (1953).

    Article  ADS  Google Scholar 

  15. Malinowski, A., Brand, M. A. & Harley, R. T. Nuclear effects in ultrafast quantum-well spin-dynamics. Physica E 10, 13–16 (2001).

    Article  ADS  Google Scholar 

  16. Braun, P.-F., Urbaszek, B., Amand, T. & Marie, X. Bistability of the nuclear polarization created through optical pumping in In1−xGaxAs quantum dots. Phys. Rev. B 74, 245306 (2006).

    Article  ADS  Google Scholar 

  17. Dzhioev, R. I. & Korenev, V. L. Stabilization of the electron–nuclear spin orientation in quantum dots by the nuclear quadrupole interaction. Phys. Rev. Lett. 99, 037401 (2007).

    Article  ADS  Google Scholar 

  18. Maletinsky, P. Polarization and Manipulation of a Mesoscopic Nuclear Spin Ensemble Using a Single Confined Electron Spin. PhD thesis, ETH Zürich (2008).

  19. Deng, C. X. & Hu, X. D. Selective dynamic nuclear spin polarization in a spin-blocked double dot. Phys. Rev. B 71, 033307 (2005).

    Article  ADS  Google Scholar 

  20. Slichter, C. P. Principles of Magnetic Resonance (Springer, 1996).

    Google Scholar 

  21. Williamson, A. J. & Zunger, A. InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures. Phys. Rev. B 59, 15819–15824 (1999).

    Article  ADS  Google Scholar 

  22. Sundfors, R. K., Tsui, R. K. & Schwab, C. Experimental gradient elastic tensors: Measurement in I–VII semiconductors and the ionic contribution in III–V and I–VII compounds. Phys. Rev. B 13, 4504–4508 (1976).

    Article  ADS  Google Scholar 

  23. Rhim, W.-K., Pines, A. & Waugh, J. S. Violation of the spin-temperature hypothesis. Phys. Rev. Lett. 25, 218–220 (1970).

    Article  ADS  Google Scholar 

  24. Churchill, H. O. H. et al. Electron–nuclear interaction in 13C nanotube double quantum. Nature Phys. 5, doi:10.1038/NPHYS1247 (2008).

  25. Feng, D. H., Akimov, I. A. & Henneberger, F. Nonequilibrium nuclear–electron spin dynamics in semiconductor quantum dots. Phys. Rev. Lett. 99, 036604 (2007).

    Article  ADS  Google Scholar 

  26. Belhadj, T. et al. Optically monitored nuclear spin dynamics in individual GaAs quantum dots grown by droplet epitaxy. Phys. Rev. B 78, 205325 (2008).

    Article  ADS  Google Scholar 

  27. Simon, P. & Loss, D. Nuclear spin ferromagnetic phase transition in an interacting two dimensional electron gas. Phys. Rev. Lett. 98, 156401 (2007).

    Article  ADS  Google Scholar 

  28. Vasanelli, A., Ferreira, R. & Bastard, G. Continuous absorption background and decoherence in quantum dots. Phys. Rev. Lett. 89, 216804 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Högele, J. Elzerman and S. D. Huber for help with the manuscript, and T. Amand and O. Krebs for discussions. We acknowledge A. Badolato for sample growth. This work is supported by NCCR-Nanoscience and an ERC Advanced Investigator Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Maletinsky or A. Imamoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maletinsky, P., Kroner, M. & Imamoglu, A. Breakdown of the nuclear-spin-temperature approach in quantum-dot demagnetization experiments. Nature Phys 5, 407–411 (2009). https://doi.org/10.1038/nphys1273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing