Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of a large-gap topological-insulator class with a single Dirac cone on the surface

Abstract

Recent experiments and theories have suggested that strong spin–orbit coupling effects in certain band insulators can give rise to a new phase of quantum matter, the so-called topological insulator, which can show macroscopic quantum-entanglement effects1,2,3,4,5,6,7. Such systems feature two-dimensional surface states whose electrodynamic properties are described not by the conventional Maxwell equations but rather by an attached axion field, originally proposed to describe interacting quarks8,9,10,11,12,13,14,15. It has been proposed that a topological insulator2 with a single Dirac cone interfaced with a superconductor can form the most elementary unit for performing fault-tolerant quantum computation14. Here we present an angle-resolved photoemission spectroscopy study that reveals the first observation of such a topological state of matter featuring a single surface Dirac cone realized in the naturally occurring Bi2Se3 class of materials. Our results, supported by our theoretical calculations, demonstrate that undoped Bi2Se3 can serve as the parent matrix compound for the long-sought topological device where in-plane carrier transport would have a purely quantum topological origin. Our study further suggests that the undoped compound reached via n-to-p doping should show topological transport phenomena even at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strong spin–orbit interaction gives rise to a single SS Dirac cone.
Figure 2: Transverse-momentum kz dependence of Dirac bands near .
Figure 3: The topology of the surface Dirac cone FS.

Similar content being viewed by others

References

  1. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  2. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306(R) (2007).

    Article  ADS  Google Scholar 

  3. Zhang, S.-C. Topological states of quantum matter. Physics 1, 6 (2008).

    Article  Google Scholar 

  4. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  5. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  ADS  Google Scholar 

  6. Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009).

    Article  ADS  Google Scholar 

  7. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  8. Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987).

    Article  ADS  Google Scholar 

  9. Franz, M. High-energy physics in a new guise. Physics 1, 36 (2008).

    Article  Google Scholar 

  10. Qi, X.-L., Li, R., Zang, J. & Zhang, S.-C. Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  11. Qi, X.-L. et al. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  ADS  Google Scholar 

  12. Ran, Y., Zhang, Y. & Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nature Phys.doi:10.1038/nphys1220 (2009).

  13. Moore, J. E., Ran, Y. & Wen, X.-G. Topological surface states in three-dimensional magnetic insulators. Phys. Rev. Lett. 101, 186805 (2008).

    Article  ADS  Google Scholar 

  14. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  15. Seradjeh, B., Moore, J. E. & Franz, M. Exciton condensation and charge fractionalization in a topological insulator film. Preprint at <http://arxiv.org/abs/0902.1147v1> (2009).

  16. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  17. DiSalvo, F. J. Thermoelectric cooling and power generation. Science 285, 703–706 (1999).

    Article  Google Scholar 

  18. Wyckoff, R. W. G. Crystal Structures (Krieger, 1986).

    MATH  Google Scholar 

  19. Hyde, G. R. et al. Electronic properties of Bi2Se3 crystals. J. Phys. Chem. Solids 35, 1719–1728 (1974).

    Article  ADS  Google Scholar 

  20. Larson, P. et al. Electronic structure of Bi2X3 (X=S, Se, T) compounds: Comparison of theoretical calculations with photoemission studies. Phys. Rev. B 65, 085108 (2002).

    Article  ADS  Google Scholar 

  21. Greanya, V. A. et al. Determination of the valence band dispersions for Bi2Se3 using angle resolved photoemission. J. Appl. Phys. 92, 6658–6661 (2002).

    Article  ADS  Google Scholar 

  22. Mooser, E. & Pearson, W. B. New semiconducting compounds. Phys. Rev. 101, 492–493 (1956).

    Article  ADS  Google Scholar 

  23. Black, J. et al. Electrical and optical properties of some M2V−BN3VI−B semiconductors. J. Phys. Chem. Solids 2, 240–251 (1957).

    Article  ADS  Google Scholar 

  24. Mishra, S. K., Satpathy, S. & Jepsen, O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J. Phys. Condens. Matter 9, 461–479 (1997).

    Article  ADS  Google Scholar 

  25. LaShell, S., McDougal, B. A. & Jensen, E. Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 77, 3419–3422 (1996).

    Article  ADS  Google Scholar 

  26. Hoesch, M. et al. Spin structure of the Shockley surface state on Au(111). Phys. Rev. B 69, 241401 (2004).

    Article  ADS  Google Scholar 

  27. Hufner, S. Photoelectron Spectroscopy (Springer, 1995).

    Book  Google Scholar 

  28. Blaha, P. et al. Computer Code WIEN2K (Vienna Univ. Technology, 2001).

    Google Scholar 

  29. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. P. Ong, B.A. Bernevig, D. Haldane and D.A. Huse for discussions. The synchrotron X-ray experiments are supported by the DOE-BES (contract DE-FG02-05ER46200) and materials synthesis is supported by the NSF-MRSEC (NSF-DMR-0819860) at Princeton Center for Complex Materials at Princeton University. Theoretical work is supported by the US Department of Energy, Office of Science, Basic Energy Sciences contract DEFG02-07ER46352, and benefited from the allocation of supercomputer time at NERSC and Northeastern University’s Advanced Scientific Computation Center (ASCC). D.Q. was partly supported by the NNSF-China (grant No. 10874116).

Author information

Authors and Affiliations

Contributions

Y.X., D.Q. and D.H., carried out the experiment with the assistance of L.W. and A.P. D.G., Y.S.H. and R.J.C. provided the samples. H.L., Y.X. and A.B. carried out the theoretical calculations and the data analysis. M.Z.H. conceived the idea for the Bi2X3 topological class before any theoretical proposal and was responsible for overall project direction, planning and management.

Corresponding author

Correspondence to M. Z. Hasan.

Supplementary information

Supplementary Information

Supplementary Information (PDF 847 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Y., Qian, D., Hsieh, D. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys 5, 398–402 (2009). https://doi.org/10.1038/nphys1274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing