Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wave–particle duality of single surface plasmon polaritons

Abstract

When light interacts with metal surfaces, it excites electrons, which can form propagating excitation waves called surface plasmon polaritons. These collective electronic excitations can produce strong electric fields localized to subwavelength distance scales1, which makes surface plasmon polaritons interesting for several applications. Many of these potential uses, and in particular those related to quantum networks2, require a deep understanding of the fundamental quantum properties of surface plasmon polaritons. Remarkably, these collective electron states preserve many key quantum mechanical properties of the photons used to excite them, including entanglement3,4 and sub-Poissonian statistics5. Here, we show that a single-photon source coupled to a silver nanowire excites single surface plasmon polaritons that exhibit both wave and particle properties, similar to those of single photons. Furthermore, the detailed analysis of the spectral interference pattern provides a new method to characterize the dimensions of metallic waveguides with nanometre accuracy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-photon emitter coupled to a silver wire.
Figure 2: Sub-Poissonian statistics of single surface plasmon polaritons.
Figure 3: Self-interference of single surface plasmon polaritons.

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  2. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A Single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  ADS  Google Scholar 

  3. Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

    Article  ADS  Google Scholar 

  4. Fasel, S. et al. Energy-time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett. 94, 110501 (2005).

    Article  ADS  Google Scholar 

  5. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Article  ADS  Google Scholar 

  6. Loudon, R. Non-classical effects in the statistical properties of light. Rep. Prog. Phys. 43, 913–949 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  7. Aspect, A. & Grangier, P. Wave-particle duality for single photons. Hyperfine Interactions 37, 3–18 (1987).

    ADS  Google Scholar 

  8. Grangier, P., Roger, G. & Aspect, A. Experimental-evidence for a photon anticorrelation effect on a beam splitter—a new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986).

    Article  ADS  Google Scholar 

  9. Zia, R. & Brongersma, M. L. Surface plasmon polariton analogue to Young’s double-slit experiment. Nature Nanotech. 2, 426–429 (2007).

    Article  ADS  Google Scholar 

  10. Ford, G. W. & Weber, W. H. Electromagnetic-interactions of molecules with metal-surfaces. Phys. Rep. 113, 195–287 (1984).

    Article  ADS  Google Scholar 

  11. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Article  ADS  Google Scholar 

  12. Fedutik, Y., Temnov, V. V., Schops, O., Woggon, U. & Artemyev, M. V. Exciton-plasmon-photon conversion in plasmonic nanostructures. Phys. Rev. Lett. 99, 136802 (2007).

    Article  ADS  Google Scholar 

  13. Temnov, V. V., Woggon, U., Dintinger, J., Devaux, E. & Ebbesen, T. W. Surface plasmon interferometry: Measuring group velocity of surface plasmons. Opt. Lett. 32, 1235–1237 (2007).

    Article  ADS  Google Scholar 

  14. Allione, M., Temnov, V. V., Fedutik, Y., Woggon, U. & Artemyev, M. V. Surface plasmon mediated interference phenomena in low-Q silver nanowire cavities. Nano Lett. 8, 31–35 (2008).

    Article  ADS  Google Scholar 

  15. Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005).

    Article  ADS  Google Scholar 

  16. Laroche, T. & Girard, C. Near-field optical properties of single plasmonic nanowires. Appl. Phys. Lett. 89, 233119 (2006).

    Article  ADS  Google Scholar 

  17. Chang, D. E., Sorensen, A. S., Hemmer, P. R. & Lukin, M. D. Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007).

    Article  ADS  Google Scholar 

  18. Gordon, R. Vectorial method for calculating the Fresnel reflection of surface plasmon polaritons. Phys. Rev. B 74, 153417 (2006).

    Article  ADS  Google Scholar 

  19. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  20. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  ADS  Google Scholar 

  21. Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006).

    Article  ADS  Google Scholar 

  22. Bonifacio, R. & Morawitz, H. Cooperative emission of an excited molecular monolayer into surface-plasmons. Phys. Rev. Lett. 36, 1559–1562 (1976).

    Article  ADS  Google Scholar 

  23. Temnov, V. V. & Woggon, U. Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity. Phys. Rev. Lett. 95, 243602 (2005).

    Article  ADS  Google Scholar 

  24. Durach, M., Rusina, A., Klimov, V. & Stockman, M. Nanoplasmonic renormalization and enhancement of Coulomb interactions. New J. Phys. 10, 105011 (2008).

    Article  ADS  Google Scholar 

  25. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  26. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    Article  ADS  Google Scholar 

  27. Korte, K., Skrabalak, S. & Xia, Y. Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J. Mater. Chem. 8, 437–441 (2008).

    Article  Google Scholar 

  28. Johnson, P. B. & Christy, R. W. Optical-constants of noble-metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ralf Vogelgesang for helpful discussions. This work was supported by the EU (QAO, EQUIND, NEDQIT), DFG (SFB/TR21 and FOR730), Landesstiftung BW, NIH and DARPA.

Author information

Authors and Affiliations

Authors

Contributions

R.K., B.G., G.B., R.J.S. and A.A.L.N. carried out the experiments; P.R.H., F.J. and J.W. designed and coordinated the experiments; and F.J. wrote the paper. All authors discussed the results, analysed the data and commented on the manuscript.

Corresponding authors

Correspondence to Fedor Jelezko or Jörg Wrachtrup.

Supplementary information

Supplementary Information

Supplementary Information (PDF 374 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesov, R., Grotz, B., Balasubramanian, G. et al. Wave–particle duality of single surface plasmon polaritons. Nature Phys 5, 470–474 (2009). https://doi.org/10.1038/nphys1278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing