Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Near-field electrical detection of optical plasmons and single-plasmon sources

Abstract

Photonic circuits can be much faster than their electronic counterparts, but they are difficult to miniaturize below the optical wavelength scale. Nanoscale photonic circuits based on surface plasmon polaritons (SPPs) are a promising solution to this problem because they can localize light below the diffraction limit1,2,3,4,5,6,7,8. However, there is a general trade-off between the localization of an SPP and the efficiency with which it can be detected with conventional far-field optics. Here, we describe a new all-electrical SPP detection technique based on the near-field coupling between guided plasmons and a nanowire field-effect transistor. We use the technique to electrically detect the plasmon emission from an individual colloidal quantum dot coupled to an SPP waveguide. Our detectors are both nanoscale and highly efficient (0.1 electrons per plasmon), and a plasmonic gating effect can be used to amplify the signal even higher (up to 50 electrons per plasmon). These results may enable new on-chip optical sensing applications and are a key step towards ‘dark’ optoplasmonic nanocircuits in which SPPs can be generated, manipulated and detected without involving far-field radiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical plasmon detection.
Figure 2: Polarization and gate effects on plasmon detection.
Figure 3: Gain in plasmon detectors and simulation.
Figure 4: Electrical detection of emission from a single CdSe colloidal quantum dot.

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  2. Haes, A. J. & Van Duyne, R. P. A unified view of propagating and localized surface plasmon resonance. Anal. Bioanal. Chem. 379, 920–930 (2004).

    Article  Google Scholar 

  3. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    ADS  Google Scholar 

  4. Atwater, H. A., Maier, S., Polman, A., Dionne, J. A. & Sweatlock, L. The new p–n junction: Plasmonics enables photonic access to the nanoworld. MRS Bull. 30, 385–389 (2005).

    Article  Google Scholar 

  5. Engheta, N. Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials. Science 1, 1698–1702 (2007).

    Article  ADS  Google Scholar 

  6. Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

    Article  ADS  Google Scholar 

  7. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  ADS  Google Scholar 

  8. Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005).

    Article  ADS  Google Scholar 

  9. Dickson, R. M. & Lyon, L. A. Unidirectional plasmon propagation in metallic nanowires. P. Phys. Chem. B. 104, 6095–6098 (2000).

    Article  Google Scholar 

  10. De Vlaminck, I., Van Dorpe, P., Lagae, L. & Borghs, G. Local electrical detection of single nanoparticle plasmon resonance. Nano Lett. 7, 703–706 (2007).

    Article  ADS  Google Scholar 

  11. Mapel, J. K., Singh, M., Baldo, M. A. & Celebi, K. Plasmonic excitation of organic double heterostructure solar cells. Appl. Phys. Lett. 90, 121102 (2007).

    Article  ADS  Google Scholar 

  12. Ditlbacher, H. et al. Organic diodes as monolithically integrated surface plasmon polariton detectors. Appl. Phys. Lett. 89, 161101 (2006).

    Article  ADS  Google Scholar 

  13. Wiley, B., Sun, Y. & Xia, Y. Polyol synthesis of silver nanostructures. Langmuir 21, 8077–8080 (2005).

    Article  Google Scholar 

  14. Sanders, A. W. et al. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett. 6, 1822–1826 (2006).

    Article  ADS  Google Scholar 

  15. Ahn, Y. & Park, J. Efficient visible light detection using individual germanium nanowire field effect transistors. Appl. Phys. Lett. 91, 162102 (2007).

    Article  ADS  Google Scholar 

  16. Takahara, J., Yamagishi, S., Taki, H., Morimoto, A. & Kobayashi, T. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997).

    Article  ADS  Google Scholar 

  17. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    Article  ADS  Google Scholar 

  18. Razeghi, M. & Rogalski, A. Semiconductor ultraviolet detectors. J. Appl. Phys. 79, 7433–7473 (1996).

    Article  ADS  Google Scholar 

  19. Palik, E. D. Handbook of Optical Contents of Solids III (Academic, 1997).

    Google Scholar 

  20. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Article  ADS  Google Scholar 

  21. Chang, D. E., Sorenson, A. S., Hemmer, P. R. & Lukin, M. D. Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007).

    Article  ADS  Google Scholar 

  22. Chang, D. E., Sorenson, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Article  ADS  Google Scholar 

  23. Brus, L. Zero-dimensional ‘excitons’ in semiconductor clusters. IEEE J. Quantum Electron. 22, 1909–1914 (1986).

    Article  ADS  Google Scholar 

  24. Koller, D. M. et al. Surface plasmon coupled electroluminescent emission. Appl. Phys. Lett. 92, 103304 (2008).

    Article  ADS  Google Scholar 

  25. Hayden, O., Agarwal, R. & Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Mater. 5, 352–356 (2006).

    Article  ADS  Google Scholar 

  26. Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–904 (2004).

    Article  ADS  Google Scholar 

  27. Chang, D. E., Sorensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  ADS  Google Scholar 

  28. Smolyaninov, I. I., Zayats, A. V., Gungor, A. & Davis, C. C. Single-photon tunneling via localized surface plasmons. Phys. Rev. Lett. 88, 187402 (2002).

    Article  ADS  Google Scholar 

  29. Greytak, A. B., Lauhon, L. J., Gudksen, M. S. & Lieber, C. M. Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84, 4176–4178 (2004).

    Article  ADS  Google Scholar 

  30. Yang, J. E., Jin, C. B., Kim, C. J. & Jo, M. H. Band-gap modulation in single-crystalline Si1−xGex nanowires. Nano Lett. 6, 2679–2684 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge D. Chang, G. Abstreiter and M. Stutzmann for valuable discussions and M. McCutcheon for assistance with the FDTD simulations. This work was supported by the Defense Advanced Research Projects Agency, the National Science Foundation, the Air Force Office of Scientific Research and Samsung Electronics.

Author information

Authors and Affiliations

Authors

Contributions

A.F. and F.K. carried out the measurements. A.F., F.K., M.L. and H.P. analysed the data and wrote the manuscript. H.P. and M.L. supervised the project. C.Y., K.K. and M.J. synthesized the nanostructures. N.S. and A.A. helped build the experimental apparatus. All of the authors discussed the results and manuscript extensively.

Corresponding authors

Correspondence to Mikhail D. Lukin or Hongkun Park.

Supplementary information

Supplementary Information

Supplementary Information (PDF 669 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falk, A., Koppens, F., Yu, C. et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys 5, 475–479 (2009). https://doi.org/10.1038/nphys1284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing