Abstract
Photonic circuits can be much faster than their electronic counterparts, but they are difficult to miniaturize below the optical wavelength scale. Nanoscale photonic circuits based on surface plasmon polaritons (SPPs) are a promising solution to this problem because they can localize light below the diffraction limit1,2,3,4,5,6,7,8. However, there is a general trade-off between the localization of an SPP and the efficiency with which it can be detected with conventional far-field optics. Here, we describe a new all-electrical SPP detection technique based on the near-field coupling between guided plasmons and a nanowire field-effect transistor. We use the technique to electrically detect the plasmon emission from an individual colloidal quantum dot coupled to an SPP waveguide. Our detectors are both nanoscale and highly efficient (∼0.1 electrons per plasmon), and a plasmonic gating effect can be used to amplify the signal even higher (up to 50 electrons per plasmon). These results may enable new on-chip optical sensing applications and are a key step towards ‘dark’ optoplasmonic nanocircuits in which SPPs can be generated, manipulated and detected without involving far-field radiation.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).
Haes, A. J. & Van Duyne, R. P. A unified view of propagating and localized surface plasmon resonance. Anal. Bioanal. Chem. 379, 920–930 (2004).
Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).
Atwater, H. A., Maier, S., Polman, A., Dionne, J. A. & Sweatlock, L. The new p–n junction: Plasmonics enables photonic access to the nanoworld. MRS Bull. 30, 385–389 (2005).
Engheta, N. Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials. Science 1, 1698–1702 (2007).
Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).
Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).
Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005).
Dickson, R. M. & Lyon, L. A. Unidirectional plasmon propagation in metallic nanowires. P. Phys. Chem. B. 104, 6095–6098 (2000).
De Vlaminck, I., Van Dorpe, P., Lagae, L. & Borghs, G. Local electrical detection of single nanoparticle plasmon resonance. Nano Lett. 7, 703–706 (2007).
Mapel, J. K., Singh, M., Baldo, M. A. & Celebi, K. Plasmonic excitation of organic double heterostructure solar cells. Appl. Phys. Lett. 90, 121102 (2007).
Ditlbacher, H. et al. Organic diodes as monolithically integrated surface plasmon polariton detectors. Appl. Phys. Lett. 89, 161101 (2006).
Wiley, B., Sun, Y. & Xia, Y. Polyol synthesis of silver nanostructures. Langmuir 21, 8077–8080 (2005).
Sanders, A. W. et al. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett. 6, 1822–1826 (2006).
Ahn, Y. & Park, J. Efficient visible light detection using individual germanium nanowire field effect transistors. Appl. Phys. Lett. 91, 162102 (2007).
Takahara, J., Yamagishi, S., Taki, H., Morimoto, A. & Kobayashi, T. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997).
Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).
Razeghi, M. & Rogalski, A. Semiconductor ultraviolet detectors. J. Appl. Phys. 79, 7433–7473 (1996).
Palik, E. D. Handbook of Optical Contents of Solids III (Academic, 1997).
Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).
Chang, D. E., Sorenson, A. S., Hemmer, P. R. & Lukin, M. D. Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007).
Chang, D. E., Sorenson, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).
Brus, L. Zero-dimensional ‘excitons’ in semiconductor clusters. IEEE J. Quantum Electron. 22, 1909–1914 (1986).
Koller, D. M. et al. Surface plasmon coupled electroluminescent emission. Appl. Phys. Lett. 92, 103304 (2008).
Hayden, O., Agarwal, R. & Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Mater. 5, 352–356 (2006).
Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–904 (2004).
Chang, D. E., Sorensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).
Smolyaninov, I. I., Zayats, A. V., Gungor, A. & Davis, C. C. Single-photon tunneling via localized surface plasmons. Phys. Rev. Lett. 88, 187402 (2002).
Greytak, A. B., Lauhon, L. J., Gudksen, M. S. & Lieber, C. M. Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84, 4176–4178 (2004).
Yang, J. E., Jin, C. B., Kim, C. J. & Jo, M. H. Band-gap modulation in single-crystalline Si1−xGex nanowires. Nano Lett. 6, 2679–2684 (2006).
Acknowledgements
We would like to acknowledge D. Chang, G. Abstreiter and M. Stutzmann for valuable discussions and M. McCutcheon for assistance with the FDTD simulations. This work was supported by the Defense Advanced Research Projects Agency, the National Science Foundation, the Air Force Office of Scientific Research and Samsung Electronics.
Author information
Authors and Affiliations
Contributions
A.F. and F.K. carried out the measurements. A.F., F.K., M.L. and H.P. analysed the data and wrote the manuscript. H.P. and M.L. supervised the project. C.Y., K.K. and M.J. synthesized the nanostructures. N.S. and A.A. helped build the experimental apparatus. All of the authors discussed the results and manuscript extensively.
Corresponding authors
Supplementary information
Supplementary Information
Supplementary Information (PDF 669 kb)
Rights and permissions
About this article
Cite this article
Falk, A., Koppens, F., Yu, C. et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys 5, 475–479 (2009). https://doi.org/10.1038/nphys1284
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1284
This article is cited by
-
Plasmonic band-gap filter by using tapered waveguide
Pramana (2023)
-
Analysis of surface plasmon polariton conversion coefficient in slit-groove structure
Journal of the Korean Physical Society (2022)
-
Two-plasmon spontaneous emission from a nonlocal epsilon-near-zero material
Communications Physics (2021)
-
Three-dimensional integration of plasmonics and nanoelectronics
Nature Electronics (2018)
-
Estimation of the Number of Quantum Dots Immobilized on an Ultra-flat Au Surface
Nanoscale Research Letters (2017)