Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detaching the antiferromagnetic quantum critical point from the Fermi-surface reconstruction in YbRh2Si2

Abstract

A continuous phase transition driven to zero temperature by a non-thermal parameter, such as pressure, terminates in a quantum critical point (QCP). At present, two main theoretical approaches are available for antiferromagnetic QCPs in heavy-fermion systems. The conventional one is the quantum generalization of finite-temperature phase transitions, which reproduces the physical properties in many cases1,2,3,4,5. More recent unconventional models incorporate a breakdown of the Kondo effect, giving rise to a Fermi-surface reconstruction6,7,8— YbRh2Si2 is a prototype of this category5,9,10,11. In YbRh2Si2, the antiferromagnetic transition temperature merges with the Kondo breakdown at the QCP. Here, we study the evolution of the quantum criticality in YbRh2Si2 under chemical pressure. Surprisingly, for positive pressure we find the signature of the Kondo breakdown within the magnetically ordered phase, whereas negative pressure induces their separation, leaving an intermediate spin-liquid-type ground state over an extended range. This behaviour suggests a new quantum phase arising from the interplay of the Kondo breakdown and the antiferromagnetic QCP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of the TH phase diagram of YbRh2Si2 under negative and positive chemical pressure.
Figure 2: Signatures of the energy scales and TN(H) in the susceptibility.
Figure 3: Signatures of in magnetoresistance and magnetization.
Figure 4: Signatures of Fermi-liquid and non-Fermi-liquid behaviour in the resistivity of Yb(Rh0.94Ir0.06)2Si2.
Figure 5: Experimental phase diagram in the zero temperature limit.

Similar content being viewed by others

References

  1. Hertz, J. A. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

    Article  ADS  Google Scholar 

  2. Millis, A. J. Effect of a nonzero temperature on quantum critical-points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).

    Article  ADS  Google Scholar 

  3. Moriya, T. & Takimoto, T. Anomalous properties around magnetic instability in heavy electron systems. J. Phys. Soc. Jpn. 64, 960–969 (1995).

    Article  ADS  Google Scholar 

  4. Löhneysen, H. v., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    Article  ADS  Google Scholar 

  5. Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nature Phys. 4, 186–197 (2008).

    Article  ADS  Google Scholar 

  6. Si, Q., Rabello, M. S., Ingersent, K. & Smith, J. L. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001).

    Article  ADS  Google Scholar 

  7. Coleman, P., Pépin, C., Si, Q. & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 13, R723–R738 (2001).

    Article  ADS  Google Scholar 

  8. Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).

    Article  ADS  Google Scholar 

  9. Custers, J. et al. The break-up of heavy electrons at a quantum critical point. Nature 424, 524–527 (2003).

    Article  ADS  Google Scholar 

  10. Park, T. et al. Isotropic quantum scattering and unconventional superconductivity. Nature 456, 366–368 (2008).

    Article  ADS  Google Scholar 

  11. Schröder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000).

    Article  ADS  Google Scholar 

  12. Trovarelli, O. et al. YbRh2Si2: Pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition. Phys. Rev. Lett. 85, 626–629 (2000).

    Article  ADS  Google Scholar 

  13. Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881–885 (2004).

    Article  ADS  Google Scholar 

  14. Gegenwart, P. et al. Multiple energy scales at a quantum critical point. Science 315, 969–971 (2007).

    Article  ADS  Google Scholar 

  15. Coleman, P., Marston, J. B. & Schofield, A. J. Transport anomalies in a simplified model for a heavy-electron quantum critical point. Phys. Rev. B 72, 245111 (2005).

    Article  ADS  Google Scholar 

  16. Harrison, N. et al. Fermi surface of CeIn3 above the Néel critical field. Phys. Rev. Lett. 99, 056401 (2007).

    Article  ADS  Google Scholar 

  17. Goh, S. K. et al. Fermi-surface reconstruction in CeRh1−xCoxIn5 . Phys. Rev. Lett. 101, 056402 (2008).

    Article  ADS  Google Scholar 

  18. Goltsev, A. V. & Abd-Elmeguid, M. M. Origin of the pressure dependence of the Kondo temperature in Ce- and Yb-based heavy-fermion compounds. J. Phys. Condens. Matter 17, S813–S821 (2005).

    Article  ADS  Google Scholar 

  19. Tokiwa, Y. et al. Field-induced suppression of the heavy-fermion state in YbRh2Si2 . Phys. Rev. Lett. 94, 226402 (2005).

    Article  ADS  Google Scholar 

  20. Weickert, F., Gegenwart, P., Ferstl, J., Geibel, C. & Steglich, F. Low-temperature electrical resistivity of Yb1−xLaxRh2Si2 . Physica B 378–380, 72–73 (2006).

    Article  ADS  Google Scholar 

  21. Westerkamp, T., Gegenwart, P., Krellner, C., Geibel, C. & Steglich, F. Low-temperature magnetic susceptibility of Yb(Rh1−xMx)2Si2 (M=Ir, Co) single crystals. Physica B 403, 1236–1238 (2008).

    Article  ADS  Google Scholar 

  22. Pépin, C. Selective Mott transition and heavy fermions. Phys. Rev. B 77, 245129 (2008).

    Article  ADS  Google Scholar 

  23. Niklowitz, P. G., Knebel, G., Flouquet, J., Bud’ko, S. L. & Canfield, P. C. Field-induced non-Fermi-liquid resistivity of stoichiometric YbAgGe single crystals. Phys. Rev. B 73, 125101 (2006).

    Article  ADS  Google Scholar 

  24. Tokiwa, Y. et al. Low-temperature thermodynamic properties of the heavy-fermion compound YbAgGe close to the field-induced quantum critical point. Phys. Rev. B 73, 094435 (2006).

    Article  ADS  Google Scholar 

  25. Doiron-Leyraud, N. et al. Fermi-liquid breakdown in the paramagnetic phase of a pure metal. Nature 425, 595–599 (2003).

    Article  ADS  Google Scholar 

  26. Nakatsuji, S. et al. Superconductivity and quantum criticality in the heavy-fermion system β-YbAlB4 . Nature Phys. 4, 603–607 (2008).

    Article  ADS  Google Scholar 

  27. Nevidomskyy, A. H. & Coleman, P. Layered Kondo lattice model for quantum critical β-YbAlB4 . Phys. Rev. Lett. 102, 077202 (2009).

    Article  ADS  Google Scholar 

  28. Sakakibara, T., Mitamura, H., Tayama, T. & Amitsuka, H. Faraday force magnetometer for high-sensitivity magnetization measurements at very low temperatures and high fields. Jpn. J. Appl. Phys. 33, 5067–5072 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank P. Coleman and Q. Si for motivating discussions. We acknowledge partial support by the DFG Research Group 960 ‘Quantum Phase Transitions’.

Author information

Authors and Affiliations

Authors

Contributions

S.F. set up, carried out and analysed the resistivity measurements. T.W. set up, carried out and analysed the a.c.-susceptibility measurements. M.B. set up, carried out and analysed the magnetization measurements. C.K. and C.G. grew the single crystals for the study. F.S., P.G., S.W. and N.O. planned and headed the project. S.F. wrote the paper with assistance from F.S., N.O, M.B., P.G. and S.W.

Corresponding authors

Correspondence to S. Friedemann or F. Steglich.

Supplementary information

Supplementary Information

Supplementary Information (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedemann, S., Westerkamp, T., Brando, M. et al. Detaching the antiferromagnetic quantum critical point from the Fermi-surface reconstruction in YbRh2Si2. Nature Phys 5, 465–469 (2009). https://doi.org/10.1038/nphys1299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing