Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity

Abstract

Preparing and manipulating quantum states of mechanical resonators is a highly interdisciplinary undertaking that now receives enormous interest for its far-reaching potential in fundamental and applied science1,2. Up to now, only nanoscale mechanical devices achieved operation close to the quantum regime3,4. We report a new micro-optomechanical resonator that is laser cooled to a level of 30 thermal quanta. This is equivalent to the best nanomechanical devices, however, with a mass more than four orders of magnitude larger (43 ng versus 1 pg) and at more than two orders of magnitude higher environment temperature (5 K versus 30 mK). Despite the large laser-added cooling factor of 4,000 and the cryogenic environment, our cooling performance is not limited by residual absorption effects. These results pave the way for the preparation of 100-μm scale objects in the quantum regime. Possible applications range from quantum-limited optomechanical sensing devices to macroscopic tests of quantum physics5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-quality micro-optomechanical resonator.
Figure 2: Experimental set-up and characterization of optomechanical radiation-pressure interaction.
Figure 3: Optomechanical laser cooling inside a cryogenic cavity.

Similar content being viewed by others

References

  1. Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (2005).

    Article  Google Scholar 

  2. Aspelmeyer, M. & Schwab, K. C. (eds) Mechanical systems at the quantum limit. New J. Phys. 10, 095001 (2008).

  3. LaHaye, M., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    Article  ADS  Google Scholar 

  4. Naik, A. et al. Cooling a nanomechanical resonator with quantum backaction. Nature 443, 193–196 (2006).

    Article  ADS  Google Scholar 

  5. Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  6. Vitali, D. et al. Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007).

    Article  ADS  Google Scholar 

  7. Metzger, C. H. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004).

    Article  ADS  Google Scholar 

  8. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–71 (2006).

    Article  ADS  Google Scholar 

  9. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and micromechanical instability of a micromirror. Nature 444, 71–75 (2006).

    Article  ADS  Google Scholar 

  10. Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4, 415–419 (2007).

    Article  ADS  Google Scholar 

  11. Corbitt, T. et al. An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007).

    Article  ADS  Google Scholar 

  12. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  Google Scholar 

  13. Teufel, J. D., Harlow, J. W., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008).

    Article  ADS  Google Scholar 

  14. Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).

    Article  ADS  Google Scholar 

  15. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

    Article  ADS  Google Scholar 

  16. Genes, C., Vitali, D., Tombesi, P., Gigan, S. & Aspelmeyer, M. Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008).

    Article  ADS  Google Scholar 

  17. Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555–560 (2008).

    Article  Google Scholar 

  18. Poggio, M. et al. An off-board quantum point contact as a sensitive detector of cantilever motion. Nature Phys. 4, 635–638 (2008).

    Article  Google Scholar 

  19. Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006).

    Article  ADS  Google Scholar 

  20. Cole, G. D., Gröblacher, S., Gugler, K., Gigan, S. & Aspelmeyer, M. Monocrystalline AlGaAs heterostructures for high-reflectivity high-Q micromechanical resonators in the MHz regime. Appl. Phys. Lett. 92, 261108 (2008).

    Article  ADS  Google Scholar 

  21. Gröblacher, S., Gigan, S., Böhm, H. R., Zeilinger, A. & Aspelmeyer, M. Radiation-pressure self-cooling of a micromirror in a cryogenic environment. Eur. Phys. Lett. 81, 54003 (2008).

    Article  ADS  Google Scholar 

  22. Poggio, M., Degen, C. L., Mamin, H. J. & Rugar, D. Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201 (2007).

    Article  ADS  Google Scholar 

  23. Rempe, G., Thompson, R. J., Kimble, H. J. & Lalezari, R. Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17, 363–365 (1996).

    Article  ADS  Google Scholar 

  24. Bleszynski-Jayich, A. C., Shanks, W. E. & Harris, J. G. E. Noise thermometry and electron thermometry of a sample-on-cantilever system below 1 K. Appl. Phys. Lett. 92, 013123 (2008).

    Article  ADS  Google Scholar 

  25. Zwickl, B. M. et al. High quality mechanical and optical properties of commercial silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008).

    Article  ADS  Google Scholar 

  26. Wilson Rae, I., Nooshi, N., Dobrindt, J., Kippenberg, T. J. & Zwerger, W. Cavity-assisted backaction cooling of mechanical resonators. New J. Phys. 10, 095007 (2008).

    Article  ADS  Google Scholar 

  27. Dobrindt, J. M., Wilson-Rae, I. & Kippenberg, T. J. Optomechanical normal-mode splitting. Phys. Rev. Lett. 101, 263602 (2008).

    Article  ADS  Google Scholar 

  28. Pinard, M., Hadjar, Y. & Heidmann, A. Effective mass in quantum effects of radiation pressure. Eur. Phys. J. D 7, 107–116 (1997).

    ADS  Google Scholar 

  29. Edward, D., Palik, E. D. & Ghosh, G. (eds) Handbook of Optical Constants of Solids (Academic, 1998).

Download references

Acknowledgements

We thank R. Lalezari (ATFilms) and M. Metzler, R. Ilic and M. Skvarla (CNF) and F. Blaser, T. Corbitt and W. Lang for discussion and support. We acknowledge support by the Austrian Science Fund FWF (Projects P19539, L426, START), by the European Commission (Projects MINOS, IQOS) and by the Foundational Questions Institute fqxi.org (Grants RFP2-08-03, RFP2-08-27). Part of this work was carried out at the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS-0335765). S.Gr. is a recipient of a DOC-fellowship of the Austrian Academy of Sciences and G.D.C. of a Marie Curie Fellowship of the European Commission. S.Gr. and M.R.V. are members of the FWF doctoral program Complex Quantum Systems (W1210).

Author information

Authors and Affiliations

Authors

Contributions

All authors have made a significant contribution to the concept, design, execution or interpretation of the presented work.

Corresponding author

Correspondence to Markus Aspelmeyer.

Supplementary information

Supplementary Information

Supplementary Information (PDF 317 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gröblacher, S., Hertzberg, J., Vanner, M. et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nature Phys 5, 485–488 (2009). https://doi.org/10.1038/nphys1301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing