Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas

Abstract

In the quest for new energy sources, the research on controlled thermonuclear fusion1 has been boosted by the start of the construction phase of the International Thermonuclear Experimental Reactor2 (ITER). ITER is based on the tokamak magnetic configuration3, which is the best performing one in terms of energy confinement. Alternative concepts are however actively researched, which in the long term could be considered for a second generation of reactors. Here, we show results concerning one of these configurations, the reversed-field pinch4,5 (RFP). By increasing the plasma current, a spontaneous transition to a helical equilibrium occurs, with a change of magnetic topology. Partially conserved magnetic flux surfaces emerge within residual magnetic chaos, resulting in the onset of a transport barrier. This is a structural change and sheds new light on the potential of the RFP as the basis for a low-magnetic-field ohmic fusion reactor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical 1.5 MA plasma discharge in RFX-mod.
Figure 2: Mode amplitudes versus the Lundquist number.
Figure 3: Mapping of the temperature profile on the helical flux surfaces.
Figure 4: Mapping of line-integrated emissivity and line-averaged density measurements on helical flux surfaces.

Similar content being viewed by others

References

  1. Freidberg, J. Plasma Physics and Fusion Energy (Cambridge Univ. Press, 2007).

    Book  Google Scholar 

  2. The ITER physics basis. Nucl. Fusion 47, S1–S413 (2007).

  3. Wesson, J. Tokamaks 3rd edn (Oxford Univ. Press, 2004).

    MATH  Google Scholar 

  4. Ortolani, S. & Schnack, D. D. Magnetohydrodynamics of Plasma Relaxation (World Scientific, 1993).

    Book  Google Scholar 

  5. Martin, P. et al. Overview of quasi-single helicity experiments in reversed field pinches. Nucl. Fusion 43, 1855–1862 (2003).

    Article  ADS  Google Scholar 

  6. Boozer, A. H. What is a stellarator? Phys. Plasmas 5, 1647–1655 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  7. Antoni, V., Martin, P. & Ortolani, S. Experimental evidence of on axis q oscillations in Eta Beta II. Plasma Phys. Control. Fusion 29, 279–285 (1987).

    Article  ADS  Google Scholar 

  8. Ji, H. & Prager, S. C. The alpha dynamo effects in laboratory plasmas. Magnetohydrodynamics 18, 191–210 (2002).

    ADS  Google Scholar 

  9. Ji, H., Almagri, A. F., Prager, S. C. & Sarff, J. S. Time resolved observation of discrete and continuous magnetohydrodynamic dynamo in the reversed-field pinch edge. Phys. Rev. Lett. 73, 668–671 (1994).

    Article  ADS  Google Scholar 

  10. Paccagnella, R. & D’Angelo, F. The stochastic diffusion process in reversed-field pinch. Phys. Plasmas 3, 2353–2364 (1996).

    Article  ADS  Google Scholar 

  11. Sarff, J. S., Hokin, S. A., Ji, H., Prager, S. C. & Sovinec, C. R. Fluctuation and transport reduction in a reversed field pinch by inductive poloidal current drive. Phys. Rev. Lett. 72, 3670–3673 (1994).

    Article  ADS  Google Scholar 

  12. Chapman, B. E. et al. Improved confinement plasmas at high temperature and high beta in the MST RFP. Nucl. Fusion (in the press).

  13. Cappello, S. & Paccagnella, R. in Proc. of the Workshop on Theory of Fusion Plasmas (ed. Sindoni, E.) 595–604 (1990).

    Google Scholar 

  14. Cappello, S. & Paccagnella, R. Nonlinear plasma evolution and sustainment in the reversed field pinch. Phys. Fluids B 4, 611–618 (1992).

    Article  ADS  Google Scholar 

  15. Finn, J. M., Nebel, R. & Bathke, C. Single and multiple helicity ohmic states in reversed field pinches. Phys. Fluids B 4, 1262–1279 (1992).

    Article  ADS  Google Scholar 

  16. Escande, D. F. et al. Quasi-single-helicity reversed-field-pinch plasmas. Phys. Rev. Lett. 85, 1662–1665 (2000).

    Article  ADS  Google Scholar 

  17. Martin, P. Magnetic and thermal relaxation in the RFP. Plasma Phys. Control. Fusion 41, A247–A255 (1999).

    Article  ADS  Google Scholar 

  18. Cappello, S. & Escande, D. F. Bifurcation in viscoresistive MHD: The Hartmann number and the reversed field pinch. Phys. Rev. Lett. 85, 3838–3841 (2000).

    Article  ADS  Google Scholar 

  19. Sonato, P. et al. Machine modification for active MHD control in RFX. Fusion Eng. Des. 66–68, 161–168 (2003).

    Article  Google Scholar 

  20. Zanca, P., Marrelli, L., Manduchi, G. & Marchiori, G. Beyond the intelligent shell concept: The clean-mode-control. Nucl. Fusion 47, 1425–1436 (2007).

    Article  ADS  Google Scholar 

  21. Lorenzini, R. et al. Single-helical axis states in reversed-field-pinch plasmas. Phys. Rev. Lett. 101, 025005 (2008).

    Article  ADS  Google Scholar 

  22. Escande, D. F. et al. Chaos healing by separatrix disappearance and quasisingle helicity states of the reversed field pinch. Phys. Rev. Lett. 85, 3169–3172 (2000).

    Article  ADS  Google Scholar 

  23. Golé, C. Ghost circles for twist maps. J. Differ. Equ. 97, 140–173 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  24. Hudson, S. R. & Breslau, J. Temperature contours and ghost surfaces for chaotic magnetic fields. Phys. Rev. Lett. 100, 095001 (2008).

    Article  ADS  Google Scholar 

  25. Bonomo, F. et al. 2D characterization of thermal core topology changes in controlled RFX-mod QSH states. Nucl. Fusion 49, 045011 (2009).

    Article  ADS  Google Scholar 

  26. Baker, W. et al. Proc. 16th IEEE/NPSS Symp. on Fusion Engineering Vol. 2, 1570–1573 (1995).

    Book  Google Scholar 

  27. Zanca, P. & Terranova, D. Reconstruction of the magnetic perturbation in a toroidal reversed field pinch. Plasma Phys. Control. Fusion 46, 1115–1141 (2004).

    Article  ADS  Google Scholar 

  28. Alfier, A. & Pasqualotto, R. New Thomson scattering diagnostic on RFX-mod. Rev. Sci. Instrum. 78, 013505 (2007).

    Article  ADS  Google Scholar 

  29. Franz, P. et al. Soft X ray tomographic imaging in the RFX reversed field pinch. Nucl. Fusion 41, 695–709 (2001).

    Article  ADS  Google Scholar 

  30. Innocente, P. et al. Upgrade of the RFX CO2 interferometer using in-vessel optics for extended edge resolution. Rev. Sci. Instrum. 68, 694–697 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the whole Consorzio RFX staff for the support in the device operation. This work has been supported by the European Communities under the contract of Association between EURATOM and ENEA.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

The experiments were carried out by the whole RFX team, R.L., E.M., P.P., D.T., P.Z., M.Z. jointly conceived this paper, in close collaboration with A.A., D.B., F.B., A.C., S.C., L.C., R.C., D.F.E., A.F., P.F., M.G., P.I., L.M., R.P., M.S., M.V. and N.V. and with M.E.P. and P.M. who lead the RFX science programme.

P. Martin5, L. Apolloni5, M. E. Puiatti5, J. Adamek6, M. Agostini5, A. Alfier5, S. V. Annibaldi7, V. Antoni5, F. Auriemma5, O. Barana5, M. Baruzzo5, P. Bettini5, T. Bolzonella5, D. Bonfiglio5, F. Bonomo5, M. Brombin5, J. Brotankova6, A. Buffa5, P. Buratti7, A. Canton5, S. Cappello5, L. Carraro5, R. Cavazzana5, M. Cavinato5, B. E. Chapman8, G. Chitarin5, S. Dal Bello5, A. De Lorenzi5, G. De Masi5, D. F. Escande5,9, A. Fassina5, A. Ferro5, P. Franz5, E. Gaio5, E. Gazza5, L. Giudicotti5, F. Gnesotto5, M. Gobbin5, L. Grando5, L. Guazzotto5, S. C. Guo5, V. Igochine10, P. Innocente5, Y. Q. Liu11, R. Lorenzini5, A. Luchetta5, G. Manduchi5, G. Marchiori5, D. Marcuzzi5, L. Marrelli5, S. Martini5, E. Martines5, K. McCollam8, F. Milani5, M. Moresco5, L. Novello5, S. Ortolani5, R. Paccagnella5, R. Pasqualotto5, S. Peruzzo5, R. Piovan5, P. Piovesan5, L. Piron5, A. Pizzimenti5, N. Pomaro5, I. Predebon5, J. A. Reusch8, G. Rostagni5, G. Rubinacci12, J. S. Sarff8, F. Sattin5, P. Scarin5, G. Serianni5, P. Sonato5, E. Spada5, A. Soppelsa5, S. Spagnolo5, M. Spolaore5, G. Spizzo5, C. Taliercio5, D. Terranova5, V. Toigo5, M. Valisa5, N. Vianello5, F. Villone13, R. B. White14, D. Yadikin10, P. Zaccaria5, A. Zamengo5, P. Zanca5, B. Zaniol5, L. Zanotto5, E. Zilli5, H. Zohm10 and M. Zuin5

Corresponding author

Correspondence to R. Lorenzini.

Additional information

See end of paper for details

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenzini, R., Martines, E., Piovesan, P. et al. Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas. Nature Phys 5, 570–574 (2009). https://doi.org/10.1038/nphys1308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1308

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing