Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Paradigm of the time-resolved magneto-optical Kerr effect for femtosecond magnetism

Abstract

The magneto-optical Kerr effect (MOKE) is a powerful tool for studying changes in the magnetization of ferromagnetic materials. It works by measuring changes in the polarization of reflected light. However, because the conventional theoretical basis for interpreting a MOKE signal assumes measurement with continuous-wave light1,2, its use for understanding high-speed magnetization dynamics of a material probed with femtosecond optical pulses3,4 has been controversial5,6,7,8,9,10. Here we establish a new paradigm for interpreting time-resolved MOKE measurements, through a first-principles investigation of ferromagnetic nickel. We show that the time-resolved optical and magnetic responses energetically follow their respective optical and magneto-optical susceptibilities. As a result, the one-to-one correspondence between them sensitively depends on the incident photon energy. In nickel, for photon energies below 2 eV the magnetic response is faithfully reflected in the optical response, but above 2 eV they decouple. By constructing a phase-sensitive polarization versus magnetization plot, we find that for short pulses the magnetic signals are delayed by 10 fs with respect to the optical signals. For longer pulses, the delay shortens and the behaviour approaches the continuous-wave response. This finally resolves the long-standing dispute over the interpretation in the time-resolved MOKE measurements and lays a solid foundation for understanding femtomagnetism3,4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic geometry of the TRMOKE.
Figure 2: Laser-induced ultrafast optical and magnetic responses.
Figure 3: Monitoring the correlation between polarization and magnetization changes.

Similar content being viewed by others

References

  1. Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, 334–345 (1955).

    Article  ADS  Google Scholar 

  2. Erskine, J. L. & Stern, E. A. Magneto-optic Kerr effects in gadolinium. Phys. Rev. B 8, 1239–1255 (1973).

    Article  ADS  Google Scholar 

  3. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  ADS  Google Scholar 

  4. Zhang, G. P., Hübner, W., Beaurepaire, E. & Bigot, J.-Y. Laser-induced ultrafast demagnetization: Femtomagnetism, a new frontier? Topics Appl. Phys. 83, 245–289 (2002).

    Article  ADS  Google Scholar 

  5. Koopmans, B., van Kampen, M., Kohlhepp, J. T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: Magnetism or optics? Phys. Rev. Lett. 85, 844–847 (2000).

    Article  ADS  Google Scholar 

  6. Guidoni, L., Beaurepaire, E. & Bigot, J.-Y. Magneto-optics in the ultrafast regime: Thermalization of spin populations in ferromagnetic films. Phys. Rev. Lett. 89, 017401 (2002).

    Article  ADS  Google Scholar 

  7. Bigot, J.-Y., Guidoni, L., Beaurepaire, E. & Saeta, P. N. Femtosecond spectrotemporal magneto-optics. Phys. Rev. Lett. 93, 077401 (2004).

    Article  ADS  Google Scholar 

  8. Wilks, R. et al. Investigation of ultrafast demagnetization and cubic optical nonlinearity of Ni in the polar geometry. J. Appl. Phys. 95, 7441–7443 (2004).

    Article  ADS  Google Scholar 

  9. Comin, A., Rossi, M., Mozzati, C., Parmigiani, F. & Banfi, G. P. Femtosecond dynamics of Co thin films on Si support. Solid State Commun. 129, 227–231 (2004).

    Article  ADS  Google Scholar 

  10. Stamm, C. et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nature Mater. 6, 740–743 (2007).

    Article  ADS  Google Scholar 

  11. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  ADS  Google Scholar 

  12. Zhang, G. P. & Hübner, W. Laser-induced ultrafast demagnetization in ferromagnetic metals. Phys. Rev. Lett. 85, 3025–3028 (2000).

    Article  ADS  Google Scholar 

  13. Lefkidis, G. & Hübner, W. First-principles study of ultrafast magneto-optical switching in NiO. Phys. Rev. B 76, 014418 (2007).

    Article  ADS  Google Scholar 

  14. Gomez-Abal, R., Ney, O., Satitkovitchai, K. & Hübner, W. All-optical subpicosecond magnetic switching in NiO(001). Phys. Rev. Lett. 92, 227402 (2004).

    Article  ADS  Google Scholar 

  15. Hohlfeld, J., Matthias, E., Knorren, R. & Bennemann, K. H. Nonequilibrium magnetization dynamics of nickel. Phys. Rev. Lett. 78, 4861–4864 (1997); erratum 79, 960–960 (1997).

  16. Regensburger, H., Vollmer, R. & Kirschner, J. Time-resolved magnetization-induced second-harmonic generation from the Ni(110) surface. Phys. Rev. B 61, 14716–14722 (2000).

    Article  ADS  Google Scholar 

  17. Malinowski, G. et al. Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum. Nature Phys. 4, 855–858 (2008).

    ADS  Google Scholar 

  18. Radu, I. et al. Laser-induced magnetization dynamics of lanthanide-doped permalloy thin films. Phys. Rev. Lett. 102, 117201 (2009).

    Article  ADS  Google Scholar 

  19. Kurkin, M. I., Bakulina, N. B. & Pisarev, R. V. Transient inverse Faraday effect and ultrafast optical switching of magnetization. Phys. Rev. B 78, 134430 (2008).

    Article  ADS  Google Scholar 

  20. Hübner, W. & Zhang, G. P. Ultrafast spin dynamics in nickel. Phys. Rev. B 58, R5920–R5923 (1998).

    Article  ADS  Google Scholar 

  21. Oppeneer, P. M. & Liebsch, A. Ultrafast demagnetization in Ni: Theory of magneto-optics for non-equilibrium electron distributions. J. Phys. Condens. Matter 16, 5519–5530 (2004).

    Article  ADS  Google Scholar 

  22. Vernes, A. & Weinberger, P. Formally linear response theory of pump–probe experiments. Phys. Rev. B 71, 165108 (2005).

    Article  ADS  Google Scholar 

  23. Zhang, G. P. Laser-induced orbital and spin excitations in ferromagnets: Insights from a two-level system. Phys. Rev. Lett. 101, 187203 (2008).

    Article  ADS  Google Scholar 

  24. Zhang, G. P. & George, T. F. Total angular momentum conservation in laser-induced femtosecond magnetism. Phys. Rev. B 78, 052407 (2008).

    Article  ADS  Google Scholar 

  25. Zhang, G. P., Bai, Y., Hübner, W., Lefkidis, G. & George, T. F. Understanding laser-induced ultrafast magnetization in ferromagnets: First-principles investigation. J. Appl. Phys. 103, 07B113 (2008).

    Article  Google Scholar 

  26. Bai, Y. & Ward, R. C. Parallel block-tridiagonalization of real symmetric matrices. J. Parallel. Distrib. Comput. 68, 703–715 (2008).

    Article  Google Scholar 

  27. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, 2001).

    Google Scholar 

  28. Kampfrath, T. et al. Ultrafast magneto-optical response of iron thin films. Phys. Rev. B 65, 104429 (2002).

    Article  ADS  Google Scholar 

  29. Ogasawara, T. et al. Photoinduced spin dynamics in La0.6Sr0.4MnO3 observed by time-resolved magneto-optical Kerr spectroscopy. Phys. Rev. B 68, 180407(R) (2003).

    Article  ADS  MathSciNet  Google Scholar 

  30. Bigot, J.-Y. Femtosecond magneto-optical processes in metals. C. R. Acad. Sci. Paris, t. Sèrie IV 2, 1483–1504 (2001).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy under contract No DE-FG02-06ER46304 and US Army Research Office under contract W911NF-04-1-0383, and was also supported by a Promising Scholars grant from Indiana State University. In addition, we acknowledge part of the work as done on Indiana State University’s high performance computers. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under contract No DE-AC02-05CH11231. W.H. and G.L. acknowledge support from Priority Programmes 1133 and 1153 of the German Research Foundation. Initial studies used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the US Department of Energy under contract No DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

G.P.Z. drafted the paper, and W.H., G.L., Y.B. and T.F.G. modified it. G.P.Z. computed the results, and G.P.Z., W.H. and G.L. analysed the data. Y.B. implemented the parallelization of the source code.

Corresponding author

Correspondence to G. P. Zhang.

Supplementary information

Supplementary Information

Supplementary Information (PDF 223 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Hübner, W., Lefkidis, G. et al. Paradigm of the time-resolved magneto-optical Kerr effect for femtosecond magnetism. Nature Phys 5, 499–502 (2009). https://doi.org/10.1038/nphys1315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing