Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin waves and magnetic exchange interactions in CaFe2As2

Abstract

Antiferromagnetism is relevant to high-temperature (high-Tc) superconductivity because copper oxide and iron arsenide superconductors arise from electron- or hole-doping of their antiferromagnetic parent compounds1,2,3,4,5,6. There are two broad classes of explanation for antiferromagnetism: in the ‘local moment’ picture, appropriate for the insulating copper oxides1, antiferromagnetic interactions are well described by a Heisenberg Hamiltonian7,8; whereas in the ‘itinerant model’, suitable for metallic chromium, antiferromagnetic order arises from quasiparticle excitations of a nested Fermi surface9,10. There has been contradictory evidence regarding the microscopic origin of the antiferromagnetic order in iron arsenide materials5,6, with some favouring a localized picture11,12,13,14,15 and others supporting an itinerant point of view16,17,18,19,20. More importantly, there has not even been agreement about the simplest effective ground-state Hamiltonian necessary to describe the antiferromagnetic order21,22,23,24,25. Here, we use inelastic neutron scattering to map spin-wave excitations in CaFe2As2 (refs 26, 27), a parent compound of the iron arsenide family of superconductors. We find that the spin waves in the entire Brillouin zone can be described by an effective three-dimensional local-moment Heisenberg Hamiltonian, but the large in-plane anisotropy cannot. Therefore, magnetism in the parent compounds of iron arsenide superconductors is neither purely local nor purely itinerant, rather it is a complicated mix of the two.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic structure, calculated spin-wave dispersion and wave-vector dependence of spin-wave excitations at different energies for CaFe2As2.
Figure 2: Constant-energy cuts of the spin-wave dispersion as a function of increasing energy and our model fit using the Heisenberg Hamiltonian.
Figure 3: Observed and calculated spin waves at 10 K, and constant-Q cuts near the antiferromagnetic zone boundary.
Figure 4: Spin-wave dispersion relation along high-symmetry directions in the three-dimensional Brillouin zone and energy dependence of the local susceptibility.

Similar content being viewed by others

References

  1. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  2. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with Tc=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  Google Scholar 

  3. Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1−xFx . Nature 453, 761–762 (2008).

    Article  ADS  Google Scholar 

  4. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide Ba1−xKxFe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Article  ADS  Google Scholar 

  5. de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).

    Article  ADS  Google Scholar 

  6. Zhao, J. et al. Structural and magnetic phase diagram of CeFeAsO1−xFx and its relation to high-temperature superconductivity. Nature Mater. 7, 953–959 (2008).

    Article  ADS  Google Scholar 

  7. Hayden, S. M. et al. Comparison of the high-frequency magnetic fluctuations in insulating and superconducting La2−xSrxCuO4 . Phys. Rev. Lett. 76, 1344–1347 (1996).

    Article  ADS  Google Scholar 

  8. Coldea, R. et al. Spin waves and electronic interactions in La2CuO4 . Phys. Rev. Lett. 86, 5377–5380 (2001).

    Article  ADS  Google Scholar 

  9. Fawcett, E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 60, 209–283 (1998).

    ADS  Google Scholar 

  10. Endoh, Y. & Böni, P. Magnetic excitations in metallic ferro- and antiferromagnets. J. Phys. Soc. Jpn 75, 111002 (2006).

    Article  ADS  Google Scholar 

  11. Dai, J. H., Si, Q., Zhu, J. S. & Abrahams, E. Iron pnictides as a new setting for quantum criticality. Proc. Natl Acad. Sci. USA 106, 4118–4121 (2009).

    Article  ADS  Google Scholar 

  12. Fang, C., Yao, H., Tsai, W. F., Hu, J. P. & Kivelson, S. A. Theory of electron nematic order in LaOFeAs. Phys. Rev. B 77, 224509 (2008).

    Article  ADS  Google Scholar 

  13. Xu, C. K., Müller, M. & Sachdev, S. Ising and spin orders in iron-based superconductors. Phys. Rev. B 78, 020501(R) (2008).

    Article  ADS  Google Scholar 

  14. Ma, F., Lu, Z. Y. & Xiang, T. Electronic structures of ternary iron arsenides AFe2As2 (A=Ba, Ca, or Sr). Preprint at <http://arxiv.org/abs/0806.3526> (2008).

  15. Manousakis, E., Ren, J., Meng, S. & Kaxiras, E. Is the nature of magnetic order in copper-oxides and in iron-pnictides different? Preprint at <http://arxiv.org/abs/0902.3450> (2009).

  16. Dong, J. et al. Competing orders and spin-density-wave instability in LaO1−xFxFeAs. Eur. Phys. Lett. 83, 27006 (2008).

    Article  ADS  Google Scholar 

  17. Yildirim, T. Frustrated magnetic interactions, giant magneto-elastic coupling, and magnetic phonons in iron-pnictides. Physica C 469, 425–441 (2009).

    Article  ADS  Google Scholar 

  18. Mazin, I. I. & Johannes, M. D. A key role for unusual spin dynamics in ferropnictides. Nature Phys. 5, 141–145 (2009).

    Article  ADS  Google Scholar 

  19. Kariyado, T. & Ogata, M. Normal state spin dynamics of five-band model for ion-pnictides. J. Phys. Soc. Jpn 78, 043708 (2009).

    Article  ADS  Google Scholar 

  20. Han, M. J., Yin, Q., Pickett, W. E. & Savrasov, S. Y. Anisotropy, itinerancy, and magnetic frustration in high-Tc iron pnictides. Phys. Rev. Lett. 102, 107003 (2009).

    Article  ADS  Google Scholar 

  21. Zhao, J. et al. Low energy spin waves and magnetic interactions in SrFe2As2 . Phys. Rev. Lett. 101, 167203 (2008).

    Article  ADS  Google Scholar 

  22. Ewings, R. A. et al. High-energy spin excitations in BaFe2As2 observed by inelastic neutron scattering. Phys. Rev. B 78, 220501(R) (2008).

    Article  ADS  Google Scholar 

  23. McQueeney, R. J. et al. Anisotropic three-dimensional magnetism in CaFe2As2 . Phys. Rev. Lett. 101, 227205 (2008).

    Article  ADS  Google Scholar 

  24. Matan, K., Morinaga, R., Iida, K. & Sato, T. J. Anisotropic itinerant magnetism and spin fluctuations in BaFe2As2: A neutron scattering study. Phys. Rev. B 79, 054526 (2009).

    Article  ADS  Google Scholar 

  25. Diallo, S. O. et al. Itinerant magnetic excitations in antiferromagnetic CaFe2As2 . Phys. Rev. Lett. 102, 187206 (2009).

    Article  ADS  Google Scholar 

  26. Wu, G. et al. Different resistivity response to spin density wave and superconductivity at 20 K in Ca1−xNaxFe2As2 . J. Phys. Condens. Matter 20, 422201 (2008).

    Article  Google Scholar 

  27. Goldman, A. I. et al. Lattice and magnetic instabilities in CaFe2As2: A single-crystal neutron diffraction study. Phys. Rev. B 78, 100506(R) (2008).

    Article  ADS  Google Scholar 

  28. Perring, T. G. et al. Spectacular doping dependence of interlayer exchange and other results on spin waves in bilayer manganites. Phys. Rev. Lett. 87, 217201 (2001).

    Article  ADS  Google Scholar 

  29. Perring, T. G. et al. <http://tobyfit.isis.rl.ac.uk/Main_Page>.

  30. Ye, F. et al. Spin waves throughout the Brillouin zone and magnetic exchange coupling in the ferromagnetic metallic manganites La1−xCaxMnO3 (x=0.25, 0.30). Phys. Rev. B 75, 144408 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. T. Boothroyd, T. Perring, D. Singh and A. Nevidomskyy for helpful discussions. This work is supported by the US National Science Foundation through DMR-0756568 and by the US Department of Energy, Division of Materials Science, Basic Energy Sciences, through DOE DE-FG02-05ER46202. This work is also supported in part by the US Department of Energy, Division of Scientific User Facilities, Basic Energy Sciences. The work at the Institute of Physics, Chinese Academy of Sciences, is supported by the Chinese Academy of Sciences. The work at USTC is supported by the Natural Science Foundation of China, the Chinese Academy of Sciences and the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Contributions

P.D. and J.Z. planned the experiment. X.F.W., G.W. and X.H.C. fabricated the samples. J.Z. and S.L. co-aligned the samples. J.Z., D.T.A., R.B. and P.D. carried out the neutron experiments and data analysis. D.-X.Y. and J.H. helped with data analysis. P.D. and J.Z. wrote the paper with input from other coauthors.

Corresponding author

Correspondence to Pengcheng Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Adroja, D., Yao, DX. et al. Spin waves and magnetic exchange interactions in CaFe2As2. Nature Phys 5, 555–560 (2009). https://doi.org/10.1038/nphys1336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing