Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Measurement of quantum noise in a single-electron transistor near the quantum limit

Abstract

Quantum measurement has challenged physicists for almost a century. Classically, there is no lower bound on the noise a measurement may add. Quantum mechanically, however, measuring a system necessarily perturbs it. When applied to electrical amplifiers, this means that improved sensitivity requires increased backaction that itself contributes noise. The result is a strict quantum limit on added amplifier noise1,2,3,4,5,6. To approach this limit, a quantum-limited amplifier must possess an ideal balance between sensitivity and backaction; furthermore, its noise must dominate that of subsequent classical amplifiers7. Here, we report the first complete and quantitative measurement of the quantum noise of a superconducting single-electron transistor (S-SET) near a double Cooper-pair resonance predicted to have the right combination of sensitivity and backaction8. A simultaneous measurement of our S-SET’s charge sensitivity indicates that it operates within a factor of 3.6 of the quantum limit, a fourfold improvement over the nearest comparable results9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental method for quantum noise measurements.
Figure 2: Subgap transport in the S-SET.
Figure 3: Noise and reflected power measurements.
Figure 4: Quantum noise of the S-SET.

Similar content being viewed by others

References

  1. Korotkov, A. N. Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737–5742 (1999).

    Article  ADS  Google Scholar 

  2. Devoret, M. H. & Schoelkopf, R. J. Amplifying quantum signals with the single-electron transistor. Nature 406, 1039–1046 (2000).

    Article  Google Scholar 

  3. Makhlin, Yu., Schön, G. & Shnirman, A. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001).

    Article  ADS  Google Scholar 

  4. Clerk, A. A., Girvin, S. M. & Stone, A. D. Quantum-limited measurement and information in mesoscopic detectors. Phys. Rev. B 67, 165324 (2003).

    Article  ADS  Google Scholar 

  5. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  ADS  Google Scholar 

  6. Gardiner, C. W. & Zoller, P. Quantum Noise (Springer, 2000).

    Book  Google Scholar 

  7. Korotkov, A. N. Nonideal quantum detectors in Bayesian formalism. Phys. Rev. B 67, 235408 (2003).

    Article  ADS  Google Scholar 

  8. Clerk, A. A., Girvin, S. M., Nguyen, A. K. & Stone, A. D. Resonant Cooper pair tunneling: Quantum noise and measurement characteristics. Phys. Rev. Lett. 89, 176804 (2002).

    Article  ADS  Google Scholar 

  9. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    Article  ADS  Google Scholar 

  10. Schoelkopf, R. J., Clerk, A. A., Girvin, S. M., Lehnert, K. W. & Devoret, M. H. in Quantum Noise in Mesoscopic Physics (ed. Nazarov, Yu. V.) 175–203 (Kluwer, 2003).

    Book  Google Scholar 

  11. Xue, W. W. et al. On-chip matching networks for radio-frequency single-electron transistors. Appl. Phys. Lett. 91, 093511 (2007).

    Article  ADS  Google Scholar 

  12. Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. E. The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer. Science 280, 1238–1242 (1998).

    Article  ADS  Google Scholar 

  13. Mozyrsky, D. & Martin, I. Quantum-classical transition induced by electrical measurement. Phys. Rev. Lett. 89, 018301 (2002).

    Article  ADS  Google Scholar 

  14. Blencowe, M. P., Imbers, J. & Armour, A. D. Dynamics of a nanomechanical resonator coupled to a superconducting single-electron transistor. New J. Phys. 7, 236 (2005).

    Article  ADS  Google Scholar 

  15. Clerk, A. A. & Bennett, S. Quantum nanoelectromechanics with electrons, quasi-particles, and Cooper pairs: Effective bath descriptions and strong feedback effects. New J. Phys. 7, 238 (2005).

    Article  ADS  Google Scholar 

  16. Deblock, R., Onac, E., Gurevich, L. & Kouwenhoven, L. P. Detection of quantum noise from an electrically driven two-level system. Science 301, 203–206 (2003).

    Article  ADS  Google Scholar 

  17. Billangeon, P., Pierre, F., Bouchiat, H. & Deblock, R. Emission and absorption asymmetry in the quantum noise of a Josephson junction. Phys. Rev. Lett. 96, 136804 (2006).

    Article  ADS  Google Scholar 

  18. Gustavsson, S. et al. Frequency-selective single photon detection using a double quantum dot. Phys. Rev. Lett. 99, 206804 (2007).

    Article  ADS  Google Scholar 

  19. Fulton, T. A., Gammel, P. L., Bishop, D. J., Dunkleberger, L. N. & Dolan, G. J. Observation of combined Josephson and charging effects in small tunnel junctions. Phys. Rev. Lett. 63, 1307–1310 (1989).

    Article  ADS  Google Scholar 

  20. Thalakulam, M., Ji, Z. & Rimberg, A. J. Sensitivity and linearity of superconducting radio-frequency single-electron transistors: Effects of quantum charge fluctuations. Phys. Rev. Lett. 93, 066804 (2004).

    Article  ADS  Google Scholar 

  21. Lu, W., Maranowski, K. D. & Rimberg, A. J. Charge transport processes in a superconducting single-electron transistor coupled to a microstrip transmission line. Phys. Rev. B 65, 060501 (2002).

    Article  ADS  Google Scholar 

  22. Shnirman, A. & Schön, G. Quantum measurements performed with a single-electron transistor. Phys. Rev. B 57, 15400–15407 (1998).

    Article  ADS  Google Scholar 

  23. Choi, M. S., Plastina, F. & Fazio, R. Shot noise for resonant Cooper pair tunneling. Phys. Rev. Lett. 87, 116601 (2001).

    Article  ADS  Google Scholar 

  24. Brenning, H., Kafanov, S., Duty, T., Kubatkin, S. & Delsing, P. An ultrasensitive radio frequency single electron transistor working up to 4.2 K. J. Appl. Phys. 100, 114321 (2006).

    Article  ADS  Google Scholar 

  25. Maassen van den Brink, A. Quantum-efficient charge detection using a single-electron transistor. Europhys. Lett. 58, 562–568 (2002).

    Article  ADS  Google Scholar 

  26. Aassime, A., Gunnarsson, D., Bladh, K., Delsing, P. & Schoelkopf, R. Radio-frequency single-electron transistor: Toward the shot noise limit. Appl. Phys. Lett. 79, 4031–4033 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ARO under Agreement No. W911NF-06-1-0312, by the NSF under Grant Nos DMR-0804488 and DMR-0804477 and by the NSA, LPS and ARO under Agreement No. W911-NF-08-1-0482. We thank T. J. Gilheart, M. Bal and F. Chen for experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.J.R. planned the experiment. W.W.X. and Z.J. fabricated the samples. W.W.X. carried out the measurements with assistance from Z.J., F.P. and J.S. M.P.B. proposed the method of analysis. W.W.X. and A.J.R. analysed the data. A.J.R. and J.S. wrote the paper with input from W.W.X. and M.P.B.

Corresponding author

Correspondence to A. J. Rimberg.

Supplementary information

Supplementary Information

Supplementary Information (PDF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, W., Ji, Z., Pan, F. et al. Measurement of quantum noise in a single-electron transistor near the quantum limit. Nature Phys 5, 660–664 (2009). https://doi.org/10.1038/nphys1339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1339

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing