Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of melting in a two-dimensional superconducting vortex lattice

Abstract

Topological defects such as dislocations are predicted to determine the two-dimensional (2D) melting transition1,2,3,4. In 2D superconducting vortex lattices, macroscopic measurements provide evidence for melting close to the transition to the normal state. However, the direct observation at the scale of individual vortices of the melting sequence has never been carried out. Here, we use scanning tunnelling spectroscopy (STS) to provide step-by-step imaging of a 2D system of vortices up to the melting transition in a W-based superconducting thin film. We show directly the transition into an isotropic liquid below the superconducting critical temperature. Before that, we find a hexatic phase, characterized by the appearance of free dislocations, and a smectic-like phase, possibly formed through partial disclination unbinding. These results represent a significant step in the understanding of the melting of 2D systems, with an impact across several research fields, such as liquid-crystal molecules or lipids in membranes5,6,7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal depinning of the 2D vortex lattice.
Figure 2: Temperature-induced changes in the superconducting signal and in the contrast of the vortex-lattice STS images.
Figure 3: Three-stage melting.
Figure 4: Phase diagram of 2D vortex-lattice melting.

Similar content being viewed by others

References

  1. Berezinskii, V. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. Sov. Phys. JETP 34, 610–616 (1972).

    ADS  Google Scholar 

  2. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    Article  ADS  Google Scholar 

  3. Halperin, B. I. & Nelson, D. R. Theory of two-dimensional melting. Phys. Rev. Lett. 41, 121–124 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  4. Young, A. P. Dislocation-mediated melting in two dimensions. Phys. Rev. B 19, 2457–2484 (1979).

    Article  Google Scholar 

  5. Chou, C.-F., Jin, A., Hui, S. W., Huang, C. C. & Ho, J. T. Multiple-step melting in two-dimensional hexatic liquid-crystal films. Science 280, 1424–1426 (1998).

    Article  ADS  Google Scholar 

  6. Zahn, K., Lenke, R. & Maret, G. Two-stage melting of paramagnetic colloidal crystals in two dimensions. Phys. Rev. Lett. 82, 2721–2724 (1999).

    Article  ADS  Google Scholar 

  7. Alsayed, A. M., Islam, M. F., Zhang, J., Collings, P. J. & Yodh, A. G. Premelting at defects within bulk colloidal crystals. Science 309, 1207–1210 (2005).

    Article  ADS  Google Scholar 

  8. Veatch, S., Soubias, O., Keller, S. & Gawrisch, K. Critical fluctuations in domain-forming lipid mixtures. Proc. Natl Acad. Sci. USA 45, 17650–17655 (2007).

    Article  ADS  Google Scholar 

  9. Altfeder, I. B. & Chen, D. M. Anisotropic charge ordering on the gallium surface. Phys. Rev. Lett. 101, 136405 (2008).

    Article  ADS  Google Scholar 

  10. Seshadri, R. & Westervelt, R. M. Statistical mechanics of magnetic bubble arrays. I. Topology and thermalization. Phys. Rev. B 46, 5142–5149 (1992).

    Article  ADS  Google Scholar 

  11. Schmitt, F. et al. Transient electronic structure and melting of a charge density wave in TbTe3 . Science 321, 1649–1652 (2008).

    Article  ADS  Google Scholar 

  12. Kes, P. & Tsuei, C. Two-dimensional collective flux pinning, defects, and structural relaxation in amorphous superconducting films. Phys. Rev. B 28, 5126–5139 (1983).

    Article  ADS  Google Scholar 

  13. Berghuis, P., van der Slot, A. L. F. & Kes, P. H. Dislocation-mediated vortex-lattice melting in thin films of α–Nb3Ge. Phys. Rev. Lett. 65, 2583–2586 (1990).

    Article  ADS  Google Scholar 

  14. Yazdani, A. et al. Observation of Kosterlitz–Thouless-type melting of the disordered vortex lattice in thin films of α-MoGe. Phys. Rev. Lett. 70, 505–508 (1993).

    Article  ADS  Google Scholar 

  15. Brandt, E. H. The flux-line lattice in superconductors. Rep. Prog. Phys. 58, 1465–1594 (1995).

    Article  ADS  Google Scholar 

  16. Blatter, G., Feigel’man, M., Geshkenbein, V., Larkin, A. & Vinokur, V. Vortices in high temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  ADS  Google Scholar 

  17. Koshelev, A. E. & Vinokur, V. M. Dynamic melting of the vortex lattice. Phys. Rev. Lett. 73, 3580–3583 (1994).

    Article  ADS  Google Scholar 

  18. Giamarchi, T. & LeDoussal, P. Moving glass phase of driven lattices. Phys. Rev. Lett. 76, 3408–3411 (1996).

    Article  ADS  Google Scholar 

  19. Moon, K., Scalettar, R. & Zimámny, G. T. Dynamical phases of driven vortex systems. Phys. Rev. Lett. 77, 2778–2781 (1996).

    Article  ADS  Google Scholar 

  20. Sadki, E., Ooi, S. & Hirata, K. Focused-ion-beam-induced deposition of superconducting nanowires. Appl. Phys. Lett. 85, 6206–6208 (2004).

    Article  ADS  Google Scholar 

  21. Guillamon, I. et al. Nanoscale superconducting properties of amorphous W-based deposits grown with focused-ion-beam. New J. Phys. 10, 093005 (2008).

    Article  ADS  Google Scholar 

  22. Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M. & Waszczak, J. V. Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214–216 (1989).

    Article  ADS  Google Scholar 

  23. Troyanovski, A. M., Aarts, J. & Kes, P. H. Collective and plastic vortex motion in superconductors at high flux densities. Nature 399, 665–668 (1999).

    Article  ADS  Google Scholar 

  24. Troyanovski, A. M., van Hecke, M., Saha, N., Aarts, J. & Kes, P. H. STM imaging of flux line arrangements in the peak effect regime. Phys. Rev. Lett. 89, 147006 (2002).

    Article  ADS  Google Scholar 

  25. van Baarle, G. J. C., Troyanovski, A. M., Kes, P. H. & Aarts, J. STM imaging vortex configurations in thin films of α-Mo3Ge through a Au layer. Physica C 369, 335–338 (2002).

    Article  ADS  Google Scholar 

  26. van Baarle, G. J. C., Troyanovski, A. M., Nishizaki, R., Kes, P. H. & Aarts, J. Imaging of vortex configurations in thin films by scanning-tunneling-microscopy. Appl. Phys. Lett. 82, 1081–1083 (2003).

    Article  ADS  Google Scholar 

  27. Harada, K. et al. Real-time observation of vortex lattices in a superconductor by electron microscopy. Nature 360, 51–53 (1992).

    Article  ADS  Google Scholar 

  28. Harada, K. et al. Direct observation of vortex dynamics in superconducting films with regular arrays of defects. Science 274, 1167–1170 (1996).

    Article  ADS  Google Scholar 

  29. Feigel’man, M. & Vinokur, V. Thermal fluctuations of vortex lines, pinning and creep in high-Tc superconductors. Phys. Rev. B 41, 8986–8990 (1990).

    Article  ADS  Google Scholar 

  30. Vinokur, V. M., Marchetti, M. C. & Chen, L.-W. Glassy motion of elastic manifolds. Phys. Rev. Lett. 77, 1845–1848 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with F. Guinea and A.I. Buzdin. The Laboratorio de Bajas Temperaturas is associated with the ICMM of the CSIC. This work was supported by the Spanish MICINN (Consolider Ingenio Molecular Nanoscience CSD2007-00010 program, MAT2008-06567-C02 and FIS2008-00454), the Comunidad de Madrid through program ‘Science and Technology at Millikelvin’, the Aragon Regional Government and NES and ECOM programs of the ESF.

Author information

Authors and Affiliations

Authors

Contributions

I.G. carried out and designed the experiments, analysed data and wrote the paper. H.S. designed the experimental set-up, supervised the experiment and analysis, and wrote the paper. A.F.-P., R.C., J.S., J.M.D.T. and M.R.I. carried out the growth and characterization of the samples, carried out the critical current measurements and contributed to the manuscript text. J.M.D.T. and M.R.I. proposed to study the samples with STS. S.V. supervised the experiment and analysis, and wrote the paper.

Corresponding author

Correspondence to H. Suderow.

Supplementary information

Supplementary Information

Supplementary Information (PDF 631 kb)

Supplementary Movie

Supplementary Movie 1 (AVI 12549 kb)

Supplementary Movie

Supplementary Movie 2 (AVI 10583 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillamón, I., Suderow, H., Fernández-Pacheco, A. et al. Direct observation of melting in a two-dimensional superconducting vortex lattice. Nature Phys 5, 651–655 (2009). https://doi.org/10.1038/nphys1368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing