Abstract
Topological defects such as dislocations are predicted to determine the two-dimensional (2D) melting transition1,2,3,4. In 2D superconducting vortex lattices, macroscopic measurements provide evidence for melting close to the transition to the normal state. However, the direct observation at the scale of individual vortices of the melting sequence has never been carried out. Here, we use scanning tunnelling spectroscopy (STS) to provide step-by-step imaging of a 2D system of vortices up to the melting transition in a W-based superconducting thin film. We show directly the transition into an isotropic liquid below the superconducting critical temperature. Before that, we find a hexatic phase, characterized by the appearance of free dislocations, and a smectic-like phase, possibly formed through partial disclination unbinding. These results represent a significant step in the understanding of the melting of 2D systems, with an impact across several research fields, such as liquid-crystal molecules or lipids in membranes5,6,7,8.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Berezinskii, V. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. Sov. Phys. JETP 34, 610–616 (1972).
Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).
Halperin, B. I. & Nelson, D. R. Theory of two-dimensional melting. Phys. Rev. Lett. 41, 121–124 (1978).
Young, A. P. Dislocation-mediated melting in two dimensions. Phys. Rev. B 19, 2457–2484 (1979).
Chou, C.-F., Jin, A., Hui, S. W., Huang, C. C. & Ho, J. T. Multiple-step melting in two-dimensional hexatic liquid-crystal films. Science 280, 1424–1426 (1998).
Zahn, K., Lenke, R. & Maret, G. Two-stage melting of paramagnetic colloidal crystals in two dimensions. Phys. Rev. Lett. 82, 2721–2724 (1999).
Alsayed, A. M., Islam, M. F., Zhang, J., Collings, P. J. & Yodh, A. G. Premelting at defects within bulk colloidal crystals. Science 309, 1207–1210 (2005).
Veatch, S., Soubias, O., Keller, S. & Gawrisch, K. Critical fluctuations in domain-forming lipid mixtures. Proc. Natl Acad. Sci. USA 45, 17650–17655 (2007).
Altfeder, I. B. & Chen, D. M. Anisotropic charge ordering on the gallium surface. Phys. Rev. Lett. 101, 136405 (2008).
Seshadri, R. & Westervelt, R. M. Statistical mechanics of magnetic bubble arrays. I. Topology and thermalization. Phys. Rev. B 46, 5142–5149 (1992).
Schmitt, F. et al. Transient electronic structure and melting of a charge density wave in TbTe3 . Science 321, 1649–1652 (2008).
Kes, P. & Tsuei, C. Two-dimensional collective flux pinning, defects, and structural relaxation in amorphous superconducting films. Phys. Rev. B 28, 5126–5139 (1983).
Berghuis, P., van der Slot, A. L. F. & Kes, P. H. Dislocation-mediated vortex-lattice melting in thin films of α–Nb3Ge. Phys. Rev. Lett. 65, 2583–2586 (1990).
Yazdani, A. et al. Observation of Kosterlitz–Thouless-type melting of the disordered vortex lattice in thin films of α-MoGe. Phys. Rev. Lett. 70, 505–508 (1993).
Brandt, E. H. The flux-line lattice in superconductors. Rep. Prog. Phys. 58, 1465–1594 (1995).
Blatter, G., Feigel’man, M., Geshkenbein, V., Larkin, A. & Vinokur, V. Vortices in high temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).
Koshelev, A. E. & Vinokur, V. M. Dynamic melting of the vortex lattice. Phys. Rev. Lett. 73, 3580–3583 (1994).
Giamarchi, T. & LeDoussal, P. Moving glass phase of driven lattices. Phys. Rev. Lett. 76, 3408–3411 (1996).
Moon, K., Scalettar, R. & Zimámny, G. T. Dynamical phases of driven vortex systems. Phys. Rev. Lett. 77, 2778–2781 (1996).
Sadki, E., Ooi, S. & Hirata, K. Focused-ion-beam-induced deposition of superconducting nanowires. Appl. Phys. Lett. 85, 6206–6208 (2004).
Guillamon, I. et al. Nanoscale superconducting properties of amorphous W-based deposits grown with focused-ion-beam. New J. Phys. 10, 093005 (2008).
Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M. & Waszczak, J. V. Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214–216 (1989).
Troyanovski, A. M., Aarts, J. & Kes, P. H. Collective and plastic vortex motion in superconductors at high flux densities. Nature 399, 665–668 (1999).
Troyanovski, A. M., van Hecke, M., Saha, N., Aarts, J. & Kes, P. H. STM imaging of flux line arrangements in the peak effect regime. Phys. Rev. Lett. 89, 147006 (2002).
van Baarle, G. J. C., Troyanovski, A. M., Kes, P. H. & Aarts, J. STM imaging vortex configurations in thin films of α-Mo3Ge through a Au layer. Physica C 369, 335–338 (2002).
van Baarle, G. J. C., Troyanovski, A. M., Nishizaki, R., Kes, P. H. & Aarts, J. Imaging of vortex configurations in thin films by scanning-tunneling-microscopy. Appl. Phys. Lett. 82, 1081–1083 (2003).
Harada, K. et al. Real-time observation of vortex lattices in a superconductor by electron microscopy. Nature 360, 51–53 (1992).
Harada, K. et al. Direct observation of vortex dynamics in superconducting films with regular arrays of defects. Science 274, 1167–1170 (1996).
Feigel’man, M. & Vinokur, V. Thermal fluctuations of vortex lines, pinning and creep in high-Tc superconductors. Phys. Rev. B 41, 8986–8990 (1990).
Vinokur, V. M., Marchetti, M. C. & Chen, L.-W. Glassy motion of elastic manifolds. Phys. Rev. Lett. 77, 1845–1848 (1996).
Acknowledgements
We acknowledge discussions with F. Guinea and A.I. Buzdin. The Laboratorio de Bajas Temperaturas is associated with the ICMM of the CSIC. This work was supported by the Spanish MICINN (Consolider Ingenio Molecular Nanoscience CSD2007-00010 program, MAT2008-06567-C02 and FIS2008-00454), the Comunidad de Madrid through program ‘Science and Technology at Millikelvin’, the Aragon Regional Government and NES and ECOM programs of the ESF.
Author information
Authors and Affiliations
Contributions
I.G. carried out and designed the experiments, analysed data and wrote the paper. H.S. designed the experimental set-up, supervised the experiment and analysis, and wrote the paper. A.F.-P., R.C., J.S., J.M.D.T. and M.R.I. carried out the growth and characterization of the samples, carried out the critical current measurements and contributed to the manuscript text. J.M.D.T. and M.R.I. proposed to study the samples with STS. S.V. supervised the experiment and analysis, and wrote the paper.
Corresponding author
Supplementary information
Supplementary Information
Supplementary Information (PDF 631 kb)
Supplementary Movie
Supplementary Movie 1 (AVI 12549 kb)
Supplementary Movie
Supplementary Movie 2 (AVI 10583 kb)
Rights and permissions
About this article
Cite this article
Guillamón, I., Suderow, H., Fernández-Pacheco, A. et al. Direct observation of melting in a two-dimensional superconducting vortex lattice. Nature Phys 5, 651–655 (2009). https://doi.org/10.1038/nphys1368
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1368
This article is cited by
-
Ordering of room-temperature magnetic skyrmions in a polar van der Waals magnet
Nature Communications (2023)
-
Critical current modulation induced by an electric field in superconducting tungsten-carbon nanowires
Scientific Reports (2021)
-
Laser-induced melting of two-dimensional dusty plasma system in RF discharge
Scientific Reports (2021)
-
Emergence and melting of active vortex crystals
Nature Communications (2021)
-
Long-range vortex transfer in superconducting nanowires
Scientific Reports (2019)