Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Arrested Kondo effect and hidden order in URu2Si2

Abstract

Complex electronic matter shows subtle forms of self-organization, which are almost invisible to the available experimental tools. One prominent example is provided by the heavy-fermion material URu2Si2. At high temperature, the 5f electrons of uranium carry a very large entropy. This entropy is released at 17.5 K by means of a second-order phase transition1 to a state that remains shrouded in mystery, termed a ‘hidden order’ state2. Here, we develop a first-principles theoretical method to analyse the electronic spectrum of correlated materials as a function of the position inside the unit cell of the crystal and use it to identify the low-energy excitations of URu2Si2. We identify the order parameter of the hidden-order state and show that it is intimately connected to magnetism. Below 70 K, the 5f electrons undergo a multichannel Kondo effect, which is ‘arrested’ at low temperature by the crystal-field splitting. At lower temperatures, two broken-symmetry states emerge, characterized by a complex order parameter ψ. A real ψ describes the hidden-order phase and an imaginary ψ corresponds to the large-moment antiferromagnetic phase. Together, they provide a unified picture of the two broken-symmetry phases in this material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Arrested Kondo effect phenomena.
Figure 2: Space-resolved electronic density of states.
Figure 3: Electronic states in orbital and momentum space.

Similar content being viewed by others

References

  1. Palstra, T. T. M. et al. Superconducting and magnetic transitions in the heavy fermion system URu2Si2 . Phys. Rev. Lett. 55, 2727–2730 (1985).

    Article  ADS  Google Scholar 

  2. Tripathi, V., Chandra, P. & Coleman, P. Sleuthing hidden order. Nature Phys. 3, 78–80 (2007).

    Article  ADS  Google Scholar 

  3. Allen, J. W. The Kondo resonance in electron spectroscopy. J. Phys. Soc. Jpn 74, 34–48 (2005).

    Article  ADS  Google Scholar 

  4. Broholm, C. et al. Magnetic excitations and ordering in the heavy-electron superconductor URu2Si2 . Phys. Rev. Lett. 58, 1467–1470 (1987).

    Article  ADS  Google Scholar 

  5. Cox, D. L. Kondo effect in real metals. Phys. Rev. Lett. 59, 1240–1243 (1987).

    Article  ADS  Google Scholar 

  6. Amitsuka, H. & Sakakibara, T. Single uranim site properties of the dilute heavy electron system UxTh1−xRu2Si2 . J. Phys. Soc. Jpn 63, 736–747 (1994).

    Article  ADS  Google Scholar 

  7. Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).

    Article  ADS  Google Scholar 

  8. Kohsaka, Y. et al. How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8, approaching the Mott insulator. Nature 454, 1072–1078 (2008).

    Article  ADS  Google Scholar 

  9. Schmidt, A. et al. Abstract number: BAPS.2009.MAR.V29.3, APS March Meeting, Pittsburgh (2009).

  10. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  ADS  Google Scholar 

  11. Denlinger, J. D. et al. Temperature dependent 5f states in URu2Si2 . J. Electron Spectrosc. Relat. Phenom. 117–118, 347–369 (2001).

    Article  Google Scholar 

  12. Denlinger, J. D. et al. Abstract number: BAPS.2009.MAR.Q2.2, APS March Meeting, Pittsburgh (2009).

  13. Broholm, C. et al. Magnetic excitations in heavy fermion superconductors. Phys. Rev. B 43, 12809–12822 (1991).

    Article  ADS  Google Scholar 

  14. Villaume, A. et al. Signature of hidden order in heavy fermion superconductor URu2Si2: Resonance at the wave vector Q0=(1,0,0). Phys. Rev. B 78, 012504 (2008).

    Article  ADS  Google Scholar 

  15. Wiebe, C. R. et al. Gapped itinerant spin excitations account for missing entropy in the hidden-order state of URu2Si2 . Nature Phys. 3, 96–99 (2007).

    Article  ADS  Google Scholar 

  16. Kiss, A. & Fazekas, P. Group theory and octupolar order in URu2Si2 . Phys. Rev. B 71, 054415 (2005).

    Article  ADS  Google Scholar 

  17. Pfleiderer, C., Mydosh, J. A. & Vojta, M. Pressure dependence of the magnetization of URu2Si2 . Phys. Rev. B 74, 104412 (2006).

    Article  ADS  Google Scholar 

  18. Amitsuka, H. et al. Pressure–temperature phase diagram of the heavy-electron superconductor URu2Si2 . J. Magn. Magn. Mater. 310, 214–220 (2007).

    Article  ADS  Google Scholar 

  19. Motoyama, G. et al. Electrical resistivity and thermal expansion measurements of URu2Si2 under pressure. J. Phys. Soc. Jpn 77, 123710 (2008).

    Article  ADS  Google Scholar 

  20. Hassinger, E. et al. Temperature–pressure phase diagram of URu2Si2 from resistivity measurements and ac calorimetry: Hidden order and Fermi-surface nesting. Phys. Rev. B 77, 115117 (2008).

    Article  ADS  Google Scholar 

  21. Jo, Y. J. et al. Field-induced Fermi surface reconstruction and adiabatic continuity between antiferromagnetism and the hidden-order state in URu2Si2 . Phys. Rev. Lett. 98, 166404 (2007).

    Article  ADS  Google Scholar 

  22. Bonn, D. A., Garret, J. D. & Timusk, T. Far infrared properties of URu2Si2 . Phys. Rev. Lett. 61, 1305–1308 (1988).

    Article  ADS  Google Scholar 

  23. van Dijk, N. H. et al. Specific heat of heavy-fermion URu2Si2 in high magnetic fields. Phys. Rev. B 56, 14493–14498 (1997).

    Article  ADS  Google Scholar 

  24. Behnia, K. et al. Thermal transport in the hidden-order state of URu2Si2 . Phys. Rev. Lett. 94, 156405 (2005).

    Article  ADS  Google Scholar 

  25. Matsuda, K. et al. Spatially inhomogeneous development of antiferromagnetism in URu2Si2: Evidence from 29Si NMR under pressure. Phys. Rev. Lett. 87, 087203 (2001).

    Article  ADS  Google Scholar 

  26. Maple, M. B. et al. Partially gapped Fermi surface in the heavy-electron superconductor URu2Si2 . Phys. Rev. Lett. 56, 185–188 (1986).

    Article  ADS  Google Scholar 

  27. Schoenes, J. et al. Hall-effect and resistivity study of the heavy-fermion system URu2Si2 . Phys. Rev. B 35, 5375–5378 (1987).

    Article  ADS  Google Scholar 

  28. Elgazzar, S. et al. Hidden order in URu2Si2 originates from Fermi surface gapping induced by dynamic symmetry breaking. Nature Mater. 8, 337–341 (2009).

    Article  ADS  Google Scholar 

  29. Kuramoto, Y., Kusunose, H. & Kiss, A. Diffraction from ordered states of higher multipoles. Physica B 383, 5–8 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Allen, J. Denlinger and J.C. Seamus Davis for fruitful discussion and for sharing unpublished work with us. K.H. was supported by grant NSF DMR-0746395 and an Alfred P. Sloan fellowship. G.K. was supported by NSF DMR-0906943.

Author information

Authors and Affiliations

Authors

Contributions

K.H. and G.K. both developed the LDA+DMFT methodology and the physical interpretation of the results.

Corresponding author

Correspondence to Kristjan Haule.

Supplementary information

Supplementary Information

Supplementary Information (PDF 227 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haule, K., Kotliar, G. Arrested Kondo effect and hidden order in URu2Si2. Nature Phys 5, 796–799 (2009). https://doi.org/10.1038/nphys1392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing