Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heavy d-electron quasiparticle interference and real-space electronic structure of Sr3Ru2O7

Abstract

The intriguing idea that strongly interacting electrons can generate spatially inhomogeneous electronic liquid-crystalline phases is over a decade old1,2,3,4,5, but these systems still represent an unexplored frontier of condensed-matter physics. One reason is that visualization of the many-body quantum states generated by the strong interactions, and of the resulting electronic phases, has not been achieved. Soft condensed-matter physics was transformed by microscopies that enabled imaging of real-space structures and patterns. A candidate technique for obtaining equivalent data in the purely electronic systems is spectroscopic imaging scanning tunnelling microscopy (SI-STM). The core challenge is to detect the tenuous but ‘heavy’ momentum (k)-space components of the many-body electronic state simultaneously with its real-space constituents. Sr3Ru2O7 provides a particularly exciting opportunity to address these issues. It possesses a very strongly renormalized ‘heavy’ d-electron Fermi liquid6,7 and exhibits a field-induced transition to an electronic liquid-crystalline phase8,9. Finally, as a layered compound, it can be cleaved to present an excellent surface for SI-STM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Topography and sub-unit-cell electronic structure imaging in Sr3Ru2O7.
Figure 2: FT-STS of Sr3Ru2O7.
Figure 3: Quasiparticle interference in the α2 band of Sr3Ru2O7.

Similar content being viewed by others

References

  1. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    Article  ADS  Google Scholar 

  2. Fradkin, E. & Kivelson, S. A. Liquid-crystal phases of quantum Hall systems. Phys. Rev. B 59, 8065–8072 (1999).

    Article  ADS  Google Scholar 

  3. Halboth, C. J. & Metzner, W. d-wave superconductivity and Pomeranchuk instability in the two-dimensional Hubbard model. Phys. Rev. Lett. 85, 5162–5165 (2000).

    Article  ADS  Google Scholar 

  4. Yamase, H. & Kohno, H. Instability toward formation of quasi-one-dimensional Fermi surface in two-dimensional t–J model. J. Phys. Soc. Jpn 69, 2151–2157 (2000).

    Article  ADS  Google Scholar 

  5. Zaanen, Z., Nussinov, Z. & Mukhin, S. I. Duality in 2+1D quantum elasticity: Superconductivity and quantum nematic order. Ann. Phys. 310, 181–260 (2004).

    Article  ADS  Google Scholar 

  6. Tamai, A. et al. Fermi surface and van Hove singularities in the itinerant metamagnet Sr3Ru2O7 . Phys. Rev. Lett. 101, 026407 (2008).

    Article  ADS  Google Scholar 

  7. Borzi, R. A. et al. de Haas–van Alphen effect across the metamagnetic transition in Sr3Ru2O7 . Phys. Rev. Lett. 92, 216403 (2004).

    Article  ADS  Google Scholar 

  8. Perry, R. S. et al. Multiple first-order metamagnetic transitions and quantum oscillations in ultrapure Sr3Ru2O7 . Phys. Rev. Lett. 92, 166602 (2004).

    Article  ADS  Google Scholar 

  9. Grigera, S. A. et al. Disorder-sensitive phase formation linked to metamagnetic quantum criticality. Science 306, 1154–1157 (2004).

    Article  ADS  Google Scholar 

  10. Borzi, R. A. et al. Formation of a nematic fluid at high fields in Sr3Ru2O7 . Science 315, 214–217 (2007).

    Article  ADS  Google Scholar 

  11. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).

    Article  ADS  Google Scholar 

  12. Petersen, L., Hofmann, Ph., Plummer, E. W. & Besenbacher, F. Fourier transform–STM: Determining the surface Fermi contour. J. Electron Spectrosc. Relat. Phenom. 109, 97 (2000).

    Article  Google Scholar 

  13. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+d . Science 297, 1148–1151 (2002).

    Article  ADS  Google Scholar 

  14. Wang, Q.-H. & Lee, D.-H. Quasiparticle scattering interference in high-temperature superconductors. Phys. Rev. B 67, 020511 (2003).

    Article  ADS  Google Scholar 

  15. McElroy, K. et al. Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ . Nature 422, 592–596 (2003).

    Article  ADS  Google Scholar 

  16. Capriotti, L., Scalapino, D. J. & Sedgewick, R. D. Wave-vector power spectrum of the local tunneling density of states: Ripples in a d-wave sea. Phys. Rev. B 68, 014508 (2003).

    Article  ADS  Google Scholar 

  17. Nunner, T. S., Chen, W., Andersen, B. M., Melikyan, A. & Hirschfeld, P. J. Fourier transform spectroscopy of d-wave quasiparticles in the presence of atomic scale pairing disorder. Phys. Rev. B 73, 104511 (2006).

    Article  ADS  Google Scholar 

  18. Hanaguri, T. et al. Quasiparticle interference and superconducting gap in Ca2−xNaxCuO2Cl2 . Nature Phys. 3, 865–871 (2007).

    Article  ADS  Google Scholar 

  19. Singh, D. J. & Mazin, I. I. Electronic structure and magnetism of Sr3Ru2O7 . Phys. Rev. B 63, 165101 (2001).

    Article  ADS  Google Scholar 

  20. Iwaya, K. et al. Local tunneling spectroscopy across a metamagnetic critical point in the bilayer ruthenate Sr3Ru2O7 . Phys. Rev. Lett. 99, 057208 (2007).

    Article  ADS  Google Scholar 

  21. Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

    Article  ADS  Google Scholar 

  22. McElroy, K. et al. Elastic scattering susceptibility of the high temperature superconductor Bi2Sr2CaCu2O8+x: A comparison between real and momentum space photoemission spectroscopies. Phys. Rev. Lett. 96, 067005 (2006).

    Article  ADS  Google Scholar 

  23. Chatterjee, U. et al. Nondispersive fermi arcs and the absence of charge ordering in the pseudogap phase of Bi2Sr2CaCu2O8+d . Phys. Rev. Lett. 96, 107006 (2006).

    Article  ADS  Google Scholar 

  24. Kim, E.-A. & Lawler, M. J. Interference of nematic quantum critical quasiparticles: A route to the octet model. Preprint at <http://arxiv.org/abs/0811.2242> (2009).

  25. Binz, B. & Sigrist, M. Metamagnetism of itinerant electrons in multi-layer ruthenates. Europhys. Lett. 65, 816–822 (2004).

    Article  ADS  Google Scholar 

  26. Kee, H. Y. & Kim, Y. B. Itinerant metamagnetism induced by electronic nematic order. Phys. Rev. B 71, 184402 (2005).

    Article  ADS  Google Scholar 

  27. Berridge, A.M. et al. Inhomogeneous magnetic phases: A LOFF-like phase in Sr3Ru2O7 . Phys. Rev. Lett. 102, 136404 (2009).

    Article  ADS  Google Scholar 

  28. Raghu, S. et al. Microscopic theory of the nematic phase in Sr3Ru2O7 . Phys. Rev. B 79, 214402 (2009).

    Article  ADS  Google Scholar 

  29. Lee, W.C. & Wu, C. Nematic electron states enhanced by orbital band hybridization. Preprint at <http://arxiv.org/abs/0902.1337> (2009).

  30. Farrell, J. E. The Influence of Cation Doping on the Electronic Properties of Sr3Ru2O7. PhD thesis, Univ. St Andrews; available at <http://hdl.handle.net/10023/689>.

Download references

Acknowledgements

We acknowledge and thank E. Fradkin, T. Hanaguri, C. A. Hooley, E.-A. Kim, S. A. Kivelson, Y. Kohsaka, M. J. Lawler, A. J. Millis, S. Raghu, T. M. Rice, S. Sachdev, K. M. Shen, H. Takagi, A. Tamai and F.-C. Zhang for helpful discussions and communications. These studies are carried out with support from NSF DMR-0520404 to the Cornell Center for Materials Research, from Brookhaven National Laboratory and from the UK EPSRC, Royal Society and Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Contributions

The crystals were grown by J.F., SI-STM experiments were carried out by J.L., M.P.A. and M.A.W. and project planning, data analysis and paper-writing were done by J.L., M.P.A., S.A.G., F.B., J.C.D. and A.P.M.

Corresponding author

Correspondence to A. P. Mackenzie.

Supplementary information

Supplementary Information

Supplementary Information (PDF 405 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Allan, M., Wang, M. et al. Heavy d-electron quasiparticle interference and real-space electronic structure of Sr3Ru2O7. Nature Phys 5, 800–804 (2009). https://doi.org/10.1038/nphys1397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing