Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

Abstract

Experiments on single nitrogen–vacancy (N–V) centres in diamond, which include electron spin resonance1, Rabi oscillations2, single-shot spin readout3 and two-qubit operations with a nearby13C nuclear spin4, show the potential of this spin system for solid-state quantum information processing. Moreover, N–V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature5. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N–V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring ‘dark’ nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of single N–V centres.
Figure 2: Polarization and magnetic-field anisotropies.
Figure 3: Controlled level mixing by means of magnetic-field alignment.
Figure 4: Resonant coupling of a single spin to neighbouring spins.

Similar content being viewed by others

References

  1. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Google Scholar 

  2. Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    ADS  Google Scholar 

  3. Jelezko, F. et al. Single spin states in a defect center resolved by optical spectroscopy. Appl. Phys. Lett. 81, 2160–2162 (2002).

    ADS  Google Scholar 

  4. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    ADS  Google Scholar 

  5. Kennedy, T. A., Colton, J. S., Butler, J. E., Linares, R. C. & Doering, P. J. Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition. Appl. Phys. Lett. 83, 4190–4192 (2003).

    ADS  Google Scholar 

  6. Davies, G. & Hamer, M. F. Optical studies of the 1.945 eV vibronic band in diamond. Proc. R. Soc. A 348, 285–298 (1976).

    ADS  Google Scholar 

  7. Pryce, M. H. L. A modified perturbation procedure for a problem in paramagnetism. Proc. Phys. Soc. A 63, 25–29 (1950).

    ADS  MATH  Google Scholar 

  8. Reddy, N. R. S., Manson, N. B. & Krausz, E. R. Two-laser spectral hole burning in a colour centre in diamond. J. Lumin. 38, 46–47 (1987).

    Google Scholar 

  9. van Oort, E., Manson, N. B. & Glasbeek, M. Optically detected spin coherence of the diamond N-V centre in its triplet ground state. J. Phys. C 21, 4385–4391 (1988).

    ADS  Google Scholar 

  10. Redman, D. A., Brown, S., Sands, R. H. & Rand, S. C. Spin dynamics and electronic states of N-V centers in diamond by EPR and four-wave-mixing spectroscopy. Phys. Rev. Lett. 67, 3420–3423 (1991).

    ADS  Google Scholar 

  11. Loubser, J. H. N. & van Wyk, J. A. Electron spin resonance in the study of diamond. Rep. Prog. Phys. 41, 1201–1248 (1978).

    ADS  Google Scholar 

  12. Redman, D., Brown, S. & Rand, S. C. Origin of persistent hole burning of N-V centers in diamond. J. Opt. Soc. Am. B 9, 768–774 (1992).

    ADS  Google Scholar 

  13. Manson, N. B. & Wei, C. Transient hole-burning in N-V centre in diamond. J. Lumin. 58, 158–160 (1994).

    Google Scholar 

  14. Lenef, A. et al. Electronic structure of the N-V center in diamond: experiments. Phys. Rev. B 53, 13427–13440 (1996).

    ADS  Google Scholar 

  15. Martin, J. P. D. Fine structure of excited3E state in nitrogen-vacancy centre of diamond. J. Lumin. 81, 237–247 (1999).

    Google Scholar 

  16. Harrison, J., Sellars, M. J. & Manson, N. B. Optical spin polarization of the N-V centre in diamond. J. Lumin. 107, 245–248 (2004).

    Google Scholar 

  17. Nizovtsev, A. P. et al. NV centers in diamond: spin-selective photokinetics, optical ground state spin alignment and hole burning. Physica B 340–342, 106–110 (2003).

    ADS  Google Scholar 

  18. Kaiser, W. & Bond, W. L. Nitrogen, a major impurity in common type I diamond. Phys. Rev. 115, 857–863 (1959).

    ADS  Google Scholar 

  19. Hanbury Brown, R. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956).

    ADS  Google Scholar 

  20. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    ADS  Google Scholar 

  21. Beveratos, A., Brouri, R., Poizat, J.-P. & Grangier, P. in Quantum Communication, Computing and Measurement 3 (eds Tombesi, P. & Hirota, O.) 261–267 (Kluwer Academic/Plenum, New York, 2001).

    Google Scholar 

  22. van Oort, E. & Glasbeek, M. Fluorescence detected level-anticrossing and spin coherence of a localized triplet state in diamond. Chem. Phys. 152, 365–373 (1991).

    Google Scholar 

  23. Martin, J. P. D. et al. Spectral hole burning and Raman heterodyne signals associated with an avoided crossing in the NV centre in diamond. J. Lumin. 86, 355–362 (2000).

    Google Scholar 

  24. He, X. -F., Manson, N. B. & Fisk, P. T. H. Paramagnetic resonance of photoexcited N-V defects in diamond. I. Level anticrossing in the3A ground state. Phys. Rev. B 47, 8809–8815 (1993).

    ADS  Google Scholar 

  25. Smith, W. V., Sorokin, P. P., Gelles, I. L. & Lasher, G. J. Electron spin resonance of nitrogen donors in diamond. Phys. Rev. 115, 1546–1552 (1959).

    ADS  Google Scholar 

  26. Holliday, K., Manson, N. B., Glasbeek, M. & van Oort, E. Optical hole-bleaching by level anti-crossing and cross relaxation in the N-V centre in diamond. J. Phys. C 1, 7093–7102 (1989).

    Google Scholar 

  27. van Oort, E. & Glasbeek, M. Cross-relaxation dynamics of optically excited N-V centers in diamond. Phys. Rev. B 40, 6509–6517 (1989).

    ADS  Google Scholar 

  28. van Oort, E., Stroomer, P. & Glasbeek, M. Low-field optically detected magnetic resonance of a coupled triplet-doublet defect pair in diamond. Phys. Rev. B 42, 8605–8608 (1990).

    ADS  Google Scholar 

  29. Farrer, R. G. On the substitutional nitrogen donor in diamond. Solid State Commun. 7, 685–688 (1969).

    ADS  Google Scholar 

  30. Meijer, J. et al. Generation of single colour centers by focussed nitrogen implantation. Preprint at http://arxiv.org/abs/cond-mat/0505063 (2005).

Download references

Acknowledgements

We thank O. Gywat for valuable discussions and G. C. Farlow for high-energy electron irradiation of several samples. This work was supported by AFOSR, DARPA/MARCO and ARO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Awschalom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, R., Mendoza, F., Kato, Y. et al. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nature Phys 1, 94–98 (2005). https://doi.org/10.1038/nphys141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing