Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors

Abstract

Superconductivity involves the formation of electron pairs (Cooper pairs) and their condensation into a macroscopic quantum state. In conventional superconductors, such as Nb3Ge and elemental Hg, weakly interacting electrons pair through the electron–phonon interaction. In contrast, unconventional superconductivity occurs in correlated-electron materials in which electronic interactions are significant and the pairing mechanism may not be phononic. In the cuprates, the superconductivity arises on doping charge carriers into the copper–oxygen layers of antiferromagnetic Mott insulators1. Other examples of unconventional superconductors are the heavy-fermion compounds, which are metals with coupled conduction and localized f-shell electrons2, and the recently discovered iron–arsenide superconductors3. These unconventional superconductors show a magnetic resonance, a prominent collective spin-1 excitation mode in the superconducting state4,5,6,7,8. Here we demonstrate the existence of a universal linear relation, Er2Δ, between the magnetic resonance energy (Er) and the superconducting pairing gap (Δ), which spans two orders of magnitude in energy. This relationship is valid for the three different classes of unconventional superconductors, which range from being close to the Mott-insulating limit to being on the border of itinerant magnetism. As the common excitonic picture of the resonance has not led to such universality, our observation suggests a much deeper connection between antiferromagnetic fluctuations and unconventional superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relation between the resonance energy Er and the transition temperature Tc.
Figure 2: Universal relationship between the resonance energy Er and the SC gap Δ.

Similar content being viewed by others

References

  1. Lee, P. A., Nagaosa, N. & Wen, X. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  2. Goll, G. Unconventional Superconductors: Experimental Investigation of the Order-Parameter Symmetry (Springer, 2005).

    Google Scholar 

  3. Kamihara, Y. et al. Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with Tc=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  Google Scholar 

  4. Rossat-Mignod, J. et al. Neutron scattering study of the YBa2Cu3O6+x system. Physica C 185, 86–92 (1991).

    Article  ADS  Google Scholar 

  5. Eschrig, M. The effect of collective spin-1 excitations on electronic spectra in high-Tc superconductors. Adv. Phys. 55, 47–183 (2006).

    Article  ADS  Google Scholar 

  6. Sato, N. K. et al. Strong coupling between local moments and superconducting ‘heavy’ electrons in UPd2Al3 . Nature 410, 340–343 (2001).

    Article  ADS  Google Scholar 

  7. Stock, C. et al. Spin resonance in the d-wave superconductor CeCoIn5 . Phys. Rev. Lett. 100, 087001 (2008).

    Article  ADS  Google Scholar 

  8. Christianson, A. D. et al. Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature 456, 930–932 (2008).

    Article  ADS  Google Scholar 

  9. Pailhès, S. et al. Two resonant magnetic modes in an overdoped high Tc superconductor. Phys. Rev. Lett. 91, 237002 (2003).

    Article  ADS  Google Scholar 

  10. Pailhès, S. et al. Resonant magnetic excitations at high energy in superconducting YBa2Cu3O6.85 . Phys. Rev. Lett. 93, 167001 (2004).

    Article  ADS  Google Scholar 

  11. Pailhès, S. et al. Doping dependence of bilayer resonant spin excitations in (Y,Ca)Ba2Cu3O6+x . Phys. Rev. Lett. 96, 257001 (2006).

    Article  ADS  Google Scholar 

  12. Fong, H. F. et al. Neutron scattering from magnetic excitations in Bi2Sr2CaCu2O8+δ . Nature 398, 588–591 (1999).

    Article  ADS  Google Scholar 

  13. Capogna, L. et al. Odd and even magnetic resonant modes in highly overdoped Bi2Sr2CaCu2O8+δ . Phys. Rev. B 75, 060502R (2007).

    Article  ADS  Google Scholar 

  14. He, H. et al. Magnetic resonant mode in the single-layer high-temperature superconductor Tl2Ba2CuO6+δ . Science 295, 1045–1047 (2002).

    Article  ADS  Google Scholar 

  15. Yu, G. et al. Magnetic resonance in the model high-temperature superconductor HgBa2CuO4+δ. Preprint at <http://arxiv.org/abs/0810.5759> (2008).

  16. Wilson, S. D. et al. Resonance in the electron-doped high-transition-temperature superconductor Pr0.88LaCe0.12CuO4−δ . Nature 442, 59–62 (2006).

    Article  ADS  Google Scholar 

  17. Yu, G. et al. Two characteristic energies in the low-energy antiferromagnetic response of the electron-doped high-temperature superconductor Nd2−xCexCuO4+δ. Preprint at <http://arxiv.org/abs/0803.3250> (2008).

  18. Lumsden, M. D. et al. Two-dimensional resonant magnetic excitation in BaFe1.84Co0.16As2 . Phys. Rev. Lett. 102, 107005 (2009).

    Article  ADS  Google Scholar 

  19. Christensen, N. B. et al. Dispersive excitations in the high-temperature superconductor La2−xSrxCuO4 . Phys. Rev. Lett. 93, 147002 (2004).

    Article  ADS  Google Scholar 

  20. Lipscombe, O. P. et al. Persistence of high-frequency spin fluctuations in overdoped superconducting La2−xSrxCuO4 (x=0.22). Phys. Rev. Lett. 99, 067002 (2007).

    Article  ADS  Google Scholar 

  21. Fong, H. F. et al. Spin susceptibility in underdoped YBa2Cu3O6+x . Phys. Rev. B 61, 14773 (2000).

    Article  ADS  Google Scholar 

  22. Norman, M. R., Pines, D. & Kallin, C. The pseudogap: Friend or foe of high Tc? Adv. Phys. 54, 715–733 (2005).

    Article  ADS  Google Scholar 

  23. Mourachikine, A. The order parameters for pairing and phase coherence in cuprates; the magnetic origin of the coherent gap. The MCS model of high-Tc superconductivity. J. Low Temp. Phys. 117, 401–405 (1999).

    Article  ADS  Google Scholar 

  24. Tchernyshyov, O., Norman, M. R. & Chubukov, A. V. Neutron resonance in high-Tc superconductors is not the π particle. Phys. Rev. B 63, 144507 (2001).

    Article  ADS  Google Scholar 

  25. Hao, Z. & Chubukov, A. V. Resonance peak in neutron scattering experiments on the cuprates revisited: The case of exciton versus pi-resonance and magnetic plasmon. Phys. Rev. B 79, 224513 (2009).

    Article  ADS  Google Scholar 

  26. Brehm, S., Arrigoni, E., Aichhorn, M. & Hanke, W. Theory of two-particle excitations and the magnetic susceptibility in high-Tc cuprate superconductors. Preprint at <http://arxiv.org/abs/0811.0552> (2008).

  27. Yang, J. et al. Exchange boson dynamics in cuprates: Optical conductivity of HgBa2CuO4+δ . Phys. Rev. Lett. 102, 027003 (2009).

    Article  ADS  Google Scholar 

  28. van Heumen, E. et al. Optical determination of the relation between the electron–boson coupling function and the critical temperature in high-Tc cuprates. Phys. Rev. B 79, 184512 (2009).

    Article  ADS  Google Scholar 

  29. Kee, H.-Y., Kivelson, S. A. & Aeppli, G. Spin-1 neutron resonance peak cannot account for electronic anomalies in the cuprate superconductors. Phys. Rev. Lett. 88, 257002 (2002).

    Article  ADS  Google Scholar 

  30. Kyung, B., Sénéchal, D. & Tremblay, A.-M. S. Pairing dynamics in strongly correlated superconductivity. Preprint at <http://arxiv.org/abs/0812.1228> (2008).

  31. Abanov, Ar., Chubukov, A. V., Eschrig, M., Norman, M. R. & Schmalian, J. Neutron resonance in the cuprates and its effect on fermionic excitations. Phys. Rev. Lett. 89, 177002 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. V. Chubukov, K. K. Gomes, R.-H. He, S. A. Kivelson and A.-M. Tremblay for comments. This work was supported by the US DOE under contract No DE-AC02-76SF00515 and by the NSF under grant No DMR-0705086.

Author information

Authors and Affiliations

Corresponding author

Correspondence to M. Greven.

Supplementary information

Supplementary Information

Supplementary Information (PDF 768 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, G., Li, Y., Motoyama, E. et al. A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors. Nature Phys 5, 873–875 (2009). https://doi.org/10.1038/nphys1426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1426

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing