Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic Mott criticality in a κ-type organic salt probed by NMR

Abstract

Near a Mott transition1, which can be tuned by controlling either the charge-carrier density (‘filling’) or the correlation strength (‘bandwidth’), lies fascinating emergent behaviour, such as unconventional superconductivity2,3, and the understanding of the underlying Mott criticality is a longstanding challenge. Recent studies have showed that the bandwidth-controlled Mott criticality (BCMC) involves critical fluctuations in charge4,5 and lattice6,7 degrees of freedom. Spin is another degree of freedom and its antiferromagnetic fluctuations are ubiquitous in strongly correlated electrons8,9. However, the magnetic aspects of BCMC are unexplored. Here, we report on the magnetic criticality brought about by BCMC. Through NMR investigations on a κ-type organic salt, we observe critical suppression of antiferromagnetic fluctuations accompanied by the critical enhancement of conductance. The two criticalities show the same exponent within experimental error. Site-to-site electron hopping introduces doubly occupied and empty sites, which extinguish stroboscopically the local spins, probably resulting in the identical criticality in charge and spin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of κ-(BEDT-TTF)2Cu[N(CN)2]Cl and the bandwidth-controlled Mott transition.
Figure 2: Bandwidth-controlled discontinuous Mott transition seen from 13C-NMR.
Figure 3: Insulator–bad metal crossover seen from 13C-NMR.
Figure 4: Continuous Mott transition at the critical temperature seen from 13C-NMR and conductance.
Figure 5: NMR characteristics around the Mott critical end-point.

Similar content being viewed by others

References

  1. Mott, N. F. Metal–Insulator Transitions (Taylor & Francis, 1990).

    Book  Google Scholar 

  2. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: An experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

    Article  ADS  Google Scholar 

  3. Nam, M.-S., Ardavan, A., Blundell, S. J. & Schlueter, J. A. Fluctuating superconductivity in organic molecular metals close to the Mott transition. Nature 449, 584–587 (2007).

    Article  ADS  Google Scholar 

  4. Limelette, P. et al. Universality and critical behavior at the Mott transition. Science 302, 89–92 (2003).

    Article  ADS  Google Scholar 

  5. Kagawa, F., Miyagawa, K. & Kanoda, K. Unconventional critical behaviour in a quasi-two-dimensional organic conductor. Nature 436, 534–537 (2005).

    Article  ADS  Google Scholar 

  6. Founier, D., Poirier, M., Castonguay, M. & Truong, K. Mott transition, compressibility divergence, and the PT phase diagram of layered organic superconductors: An ultrasonic investigation. Phys. Rev. Lett. 90, 127002 (2003).

    Article  ADS  Google Scholar 

  7. Souza, de M. et al. Anomalous lattice response at the Mott transition in a quasi-2D organic conductor. Phys. Rev. Lett. 99, 037003 (2007).

    Article  ADS  Google Scholar 

  8. Millis, A. J., Monien, H. & Pines, D. Phenomenological model of nuclear relaxation in the normal state of YBa2Cu3O7 . Phys. Rev. B 42, 167–178 (1990).

    Article  ADS  Google Scholar 

  9. Yusuf, E., Powell, B. J. & McKenzie, R. H. Antiferromagnetic spin fluctuations in the metallic phase of quasi-two-dimensional organic superconductors. Phys. Rev. B 75, 214515 (2007).

    Article  ADS  Google Scholar 

  10. Kanoda, K. Recent progress in NMR studies on organic conductors. Hyperfine Interact. 104, 235–249 (1997).

    Article  ADS  Google Scholar 

  11. Kino, H. & Fukuyama, H. Phase diagram of two-dimensional organic conductors: (BEDT-TTF)2X. J. Phys. Soc. Jpn 65, 2158–2169 (1996).

    Article  ADS  Google Scholar 

  12. Lefebvre, S. et al. Mott transition, antiferromagnetism, and unconventional superconductivity in layered organic superconductors. Phys. Rev. Lett. 85, 5420–5423 (2000).

    Article  ADS  Google Scholar 

  13. Limelette, P. et al. Mott transition and transport crossovers in the organic compound κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Phys. Rev. Lett. 91, 016401 (2003).

    Article  ADS  Google Scholar 

  14. Kagawa, F., Itou, T., Miyagawa, K. & Kanoda, K. Transport criticality of the first-order Mott transition in the quasi-two-dimensional organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Phys. Rev. B 69, 064511 (2004).

    Article  ADS  Google Scholar 

  15. Kagawa, F., Itou, T., Miyagawa, K. & Kanoda, K. Transport criticality of the first-order Mott transition in the quasi-two-dimensional organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Phys. Rev. Lett. 93, 127001 (2004).

    Article  ADS  Google Scholar 

  16. Ohashi, T., Momoi, T., Tsunetsugu, H. & Kawakami, N. Finite temperature Mott transition in Hubbard model on anisotropic triangular lattice. Phys. Rev. Lett. 100, 076402 (2008).

    Article  ADS  Google Scholar 

  17. Park, H., Haule, K. & Kotliar, G. Cluster dynamical mean field theory of the Mott transition. Phys. Rev. Lett. 101, 186403 (2008).

    Article  ADS  Google Scholar 

  18. Kotliar, G., Lange, E. & Rozenberg, M. J. Landau theory of the finite temperature Mott transition. Phys. Rev. Lett. 84, 5180–5183 (2000).

    Article  ADS  Google Scholar 

  19. Imada, M. Universality classes of metal–insulator transitions in strongly correlated electron systems and mechanism of high-temperature superconductivity. Phys. Rev. B 72, 075113 (2005).

    Article  ADS  Google Scholar 

  20. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  21. Kotliar, G. & Vollhardt, D. Strongly correlated materials: Insights from dynamical mean-field theory. Phys. Today 57, 53–59 (2004).

    Article  Google Scholar 

  22. Sasaki, T., Yoneyama, N., Kobayashi, N., Ikemoto, Y. & Kimura, H. Imaging phase separation near the Mott boundary of the correlated organic superconductors κ-(BEDT-TTF)2X. Phys. Rev. Lett. 92, 227001 (2004).

    Article  ADS  Google Scholar 

  23. Dumm, M. et al. Bandwidth-controlled Mott transition in κ-(BEDT-TTF)2Cu[N(CN)2]BrxCl1−x: Optical studies of correlated carriers. Phys. Rev. B 79, 195106 (2009).

    Article  ADS  Google Scholar 

  24. Kobashi, K. Transport Properties Near the Mott Transition in the Quasi-Two-Dimensional Organic Conductor κ-(ET)2X. Thesis, Univ. Tokyo (2007).

  25. Papanikolaou, S. et al. Universality of liquid-gas Mott transitions at finite temperatures. Phys. Rev. Lett. 100, 026408 (2008).

    Article  ADS  Google Scholar 

  26. Brinkman, W. F. & Rice, T. M. Application of Gutzwiller’s variational method to the metal–insulator transition. Phys. Rev. B 2, 4302–4304 (1970).

    Article  ADS  Google Scholar 

  27. Faltermeier, D. et al. Bandwidth-controlled Mott transition in κ-(BEDT-TTF)2Cu[N(CN)2]BrxCl1−x: Optical studies of localized charge excitations. Phys. Rev. B 76, 165113 (2007).

    Article  ADS  Google Scholar 

  28. Merino, J., Dumm, M., Drichko, N., Dressel, M. & McKenzie, R. H. Quasiparticles at the verge of localization near the Mott metal–insulator transition in a two-dimensional material. Phys. Rev. Lett. 100, 086404 (2008).

    Article  ADS  Google Scholar 

  29. De Soto, S. M. et al. 13C NMR studies of the normal and superconducting states of the organic superconductor κ-(ET)2Cu[N(CN)2]Br. Phys. Rev. B 52, 10364–10368 (1995).

    Article  ADS  Google Scholar 

  30. Kagawa, F., Kurosaki, Y., Miyagawa, K. & Kanoda, K. Field-induced staggered magnetic moment in the quasi-two-dimensional organic Mott insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Phys. Rev. B 78, 184402 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Watanabe, M. Imada, J. Fujioka and Y. Takahashi for fruitful discussion. This work was partially supported by Grant-in-Aids for Scientific Researches on the Priority Area (Grant No. 17071003) and on Innovative Area (Grant No. 20110002) from the MEXT, a Grant-in-Aid for Scientific Research (Grant Nos 20244055 and No. 20540346) from the JSPS and the Global COE Program: Global Center of Excellence for the Physical Sciences Frontier.

Author information

Authors and Affiliations

Authors

Contributions

F.K., K.M. and K.K. designed the experiments. F.K. carried out the experiments and analysed the data. F.K. and K.K. interpreted the data. K.M. grew the single crystals for the study. F.K. wrote the paper with assistance from K.K. and K.M.

Corresponding author

Correspondence to Fumitaka Kagawa.

Supplementary information

Supplementary Information

Supplementary Information (PDF 537 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagawa, F., Miyagawa, K. & Kanoda, K. Magnetic Mott criticality in a κ-type organic salt probed by NMR. Nature Phys 5, 880–884 (2009). https://doi.org/10.1038/nphys1428

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1428

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing