Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nernst effect and dimensionality in the quantum limit

Abstract

The Nernst effect has recently emerged as a very sensitive, yet poorly understood, probe of electron organization in solids1,2,3,4. Graphene, a single layer of carbon atoms set in a honeycomb lattice, embeds a two-dimensional gas of massless electrons5 and hosts a particular version of the quantum Hall effect6,7. Recent experimental investigations of its thermoelectric response8,9,10 are in agreement with the theory conceived for a two-dimensional electron system in the quantum Hall regime11,12. Here, we report on a study of graphite13, a macroscopic stack of graphene layers, which establishes a fundamental link between the dimensionality of an electronic system and its Nernst response. In striking contrast with the single-layer case, the Nernst signal sharply peaks whenever a Landau level meets the Fermi level. Thus, the degrees of freedom provided by finite interlayer coupling lead to an enhanced thermoelectric response in the vicinity of the quantum limit. As Landau quantization slices a three-dimensional Fermi surface, each intersection of a Landau level with the Fermi level modifies the Fermi-surface topology. According to our results, the most prominent signature of such a topological phase transition emerges in the transverse thermoelectric response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The field dependence of the Nernst signal in two HOPG samples at different temperatures.
Figure 2: Quantum oscillations of various transport coefficients at low temperatures.
Figure 3: Hall and Nernst effects in the vicinity of the quantum limit.
Figure 4: Dimensionality and the profile of a Nernst quantum oscillation.

Similar content being viewed by others

References

  1. Wang, Y., Li, L. & Ong, N. P. Nernst effect in high-Tc superconductors. Phys. Rev. B 73, 024510 (2006).

    Article  ADS  Google Scholar 

  2. Pourret, A. et al. Observation of the Nernst signal generated by fluctuating Cooper pairs. Nature Phys. 2, 683–686 (2006).

    Article  ADS  Google Scholar 

  3. Behnia, K. The Nernst effect and the boundaries of the Fermi liquid picture. J. Phys. Condens. Matter 21, 113101 (2009).

    Article  ADS  Google Scholar 

  4. Cyr-Choinière, O. et al. Enhancement of the Nernst effect by stripe order in a high-Tc superconductor. Nature 458, 743–745 (2009).

    Article  ADS  Google Scholar 

  5. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  6. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  7. Zhang, Y. et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  8. Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).

    Article  ADS  Google Scholar 

  9. Wei, P. et al. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009).

    Article  ADS  Google Scholar 

  10. Checkelsky, J. G. & Ong, N. P. Thermopower and Nernst effect in graphene in a magnetic field. Phys. Rev. B 80, 081413(R) (2009).

    Article  ADS  Google Scholar 

  11. Jonson, M. & Grivin, S. M. Thermoelectric effect in a weakly disordered inversion layer subject to a quantizing magnetic field. Phys. Rev. B 29, 1939–1946 (1984).

    Article  ADS  Google Scholar 

  12. Oji, J. Thermomagnetic effects in two-dimensional electron systems. J. Phys. C 17, 3059–3066 (1984).

    Article  ADS  Google Scholar 

  13. Brandt, N. B., Chudinovn, S. M. & Ponomarev, Ya. G. Semimetals I. Graphite and its Compounds (Elsevier, 1988).

    Google Scholar 

  14. Behnia, K., Méasson, M.-A. & Kopelevich, Y. Oscillating Nernst–Ettingshausen effect in bismuth across the quantum limit. Phys. Rev. Lett. 98, 166602 (2007).

    Article  ADS  Google Scholar 

  15. Lifshitz, I. M. Anomalies of electron characteristics of a metal in the high pressure region. JETP 11, 1130–1135 (1960).

    Google Scholar 

  16. Blanter, Ya. M., Kaganov, M. I., Pantsulaya, A. V. & Varlamov, A. A. The theory of electronic topological transitions. Phys. Rep. 245, 159–257 (1994).

    Article  ADS  Google Scholar 

  17. Soule, D. E., McClure, J. W. & Smith, L. B. Study of the Shubnikov–de Haas effect. Determination of the Fermi surfaces in graphite. Phys. Rev. 134, A453–A470 (1964).

    Article  ADS  Google Scholar 

  18. Williamson, S. J., Foner, S. & Dresselhaus, M. S. de Haas–van Alphen effect in pyrolytic and single-crystal graphite. Phys. Rev. 140, A1429–A1447 (1965).

    Article  ADS  Google Scholar 

  19. Woollam, J. A. Graphite carrier locations and quantum transport to 10 T (100 kG). Phys. Rev. B 3, 1148–1158 (1971).

    Article  ADS  Google Scholar 

  20. Slonczewski, J. C. & Weiss, P. R. Band structure of graphite. Phys. Rev. 109, 272–279 (1958).

    Article  ADS  Google Scholar 

  21. McClure, J. W. Band structure of graphite and de Haas–van Alphen effect. Phys. Rev. 108, 612–618 (1957).

    Article  ADS  Google Scholar 

  22. Luk’yanchuk, I. A. & Kopelevich, Y. Dirac and normal fermions in graphite and graphene: Implications of the quantum Hall effect. Phys. Rev. Lett. 97, 256801 (2006).

    Article  ADS  Google Scholar 

  23. Schneider, J. M. et al. Consistent interpretation of the low-temperature magnetotransport in graphite using the Slonczewski–Weiss–McClure 3D band-structure calculations. Phys. Rev. Lett. 102, 166403 (2009).

    Article  ADS  Google Scholar 

  24. Behnia, K., Méasson, M.-A. & Kopelevich, Y. Nernst effect in semimetals: The effective mass and the figure of merit. Phys. Rev. Lett. 98, 076603 (2007).

    Article  ADS  Google Scholar 

  25. Sugihara, K. & Ono, S. Galvanometric properties of graphite at low temperatures. J. Phys. Soc. Jpn 21, 631–637 (1966).

    Article  ADS  Google Scholar 

  26. Fletcher, R. Magnetothermoelectric effects in semiconductor systems. Semicond. Sci. Technol. 14, R1–R15 (1999).

    Article  ADS  Google Scholar 

  27. Gusynin, V. P. & Sharapov, S. G. Transport of Dirac quasiparticles in graphene: Hall and optical conductivities. Phys. Rev. B 73, 245411 (2006).

    Article  ADS  Google Scholar 

  28. Livanov, D. V. Hall and Nernst effects in some models of anisotropic metals. Phys. Rev. B 60, 13439–13443 (1999).

    Article  ADS  Google Scholar 

  29. Behnia, K., Balicas, L. & Kopelevich, Y. Signatures of electron fractionalization in ultraquantum bismuth. Science 317, 1729–1731 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Varlamov for stimulating discussions and in particular for introducing ref.16 to us. This work is supported by the Agence Nationale de Recherche (ANR-08-BLAN-0121-02) as a part of the DELICE project in France and by FAPESP and CNPq in Brazil. Z.Z. acknowledges a scholarship granted by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. (assisted by H.Y. and B.F.) carried out the experiment and (assisted by K.B.) analysed the data and prepared the figures. Y.K. initiated this work. K.B. wrote the paper.

Corresponding author

Correspondence to Kamran Behnia.

Supplementary information

Supplementary Information

Supplementary Information (PDF 959 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Yang, H., Fauqué, B. et al. Nernst effect and dimensionality in the quantum limit. Nature Phys 6, 26–29 (2010). https://doi.org/10.1038/nphys1437

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1437

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing