Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Melting temperature of diamond at ultrahigh pressure

Abstract

Since Ross proposed that there might be ‘diamonds in the sky’ in 1981 (ref. 1), the idea of significant quantities of pure carbon existing in giant planets such as Uranus and Neptune has gained both experimental2 and theoretical3 support. It is now accepted that the high-pressure, high-temperature behaviour of carbon is essential to predicting the evolution and structure of such planets4. Still, one of the most defining of thermal properties for diamond, the melting temperature, has never been directly measured. This is perhaps understandable, given that diamond is thermodynamically unstable, converting to graphite before melting at ambient pressure, and tightly bonded, being the strongest bulk material known5,6. Shock-compression experiments on diamond reported here reveal the melting temperature of carbon at pressures of 0.6–1.1 TPa (6–11 Mbar), and show that crystalline diamond can be stable deep inside giant planets such as Uranus and Neptune1,2,3,4,7. The data indicate that diamond melts to a denser, metallic fluid—with the melting curve showing a negative Clapeyron slope—between 0.60 and 1.05 TPa, in good agreement with predictions of first-principles calculations8. Temperature data at still higher pressures suggest diamond melts to a complex fluid state, which dissociates at shock pressures between 1.1 and 2.5 TPa (11–25 Mbar) as the temperatures increase above 50,000 K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental configuration and data collected to determine the melting temperature of diamond.
Figure 2: Temperature versus shock velocity for all nine experiments carried out in the present study.
Figure 3: Temperature versus pressure data compared with simulations.
Figure 4: Specific heat versus temperature showing the Dulong–Petit limit, CV=3N kB, which should hold for the solid below the melting temperature, and the peak attributed to atomic reconfiguration above the melting temperature.

Similar content being viewed by others

References

  1. Ross, M. The ice layer in Uranus and Neptune—diamonds in the sky? Nature 292, 435–436 (1981).

    Article  ADS  Google Scholar 

  2. Benedetti, L. R. et al. Dissociation of CH4 at high pressures and temperatures: Diamond formation in giant planet interiors? Science 286, 100–102 (1999).

    Article  ADS  Google Scholar 

  3. Ancilotto, F., Chiarotti, G. L., Scandolo, S. & Tosatti, E. Dissociation of methane into hydrocarbons at extreme (planetary) pressure and temperature. Science 275, 1288–1290 (1997).

    Article  ADS  Google Scholar 

  4. Guillot, T. The interiors of giant planets: Models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493–530 (2005).

    Article  ADS  Google Scholar 

  5. Bundy, F. P. Melting of graphite at very high pressure. J. Chem. Phys. 38, 618–630 (1963).

    Article  ADS  Google Scholar 

  6. Togaya, M. in Science and Technology of New Diamond (eds Saitro, S., Fukunaga, O. & Yoshikawa, M.) 369–373 (KTK Scientific Publishers, 1990).

    Google Scholar 

  7. Bradley, D. K. et al. Shock compressing diamond to a conducting fluid. Phys. Rev. Lett. 93, 195506 (2004).

    Article  ADS  Google Scholar 

  8. Correa, A. A., Bonev, S. A. & Galli, G. Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory. Proc. Natl Acad. Sci. USA 103, 1204–1208 (2006).

    Article  ADS  Google Scholar 

  9. Grumbach, M. P. & Martin, R. M. Phase diagram of carbon at high pressures and temperatures. Phys. Rev. B 54, 15730–15741 (1996).

    Article  ADS  Google Scholar 

  10. Wu, C. J., Glosli, J. N., Galli, G. & Ree, F. H. Liquid–liquid phase transition in elemental carbon: A first-principles investigation. Phys. Rev. Lett. 89, 135701 (2002).

    Article  ADS  Google Scholar 

  11. Wang, X.-F., Scandolo, S. & Car, R. Carbon phase diagram from ab initio molecular dynamics. Phys. Rev. Lett. 95, 185701 (2005).

    Article  ADS  Google Scholar 

  12. Weathers, M. S. & Bassett, W. A. Melting of carbon at 50–300 kbar. Phys. Chem. Minerals 15, 105–112 (1987).

    Article  ADS  Google Scholar 

  13. Bundy, F. P. Direct conversion of graphite to diamond in static pressure apparatus. J. Chem. Phys. 38, 631–643 (1963).

    Article  ADS  Google Scholar 

  14. Gust, W. H. Phase transition and shock-compression parameters to 120 GPa for three types of graphite and for amorphous carbon. Phys. Rev. B 22, 4744–4756 (1980).

    Article  ADS  Google Scholar 

  15. Fried, L. E. & Howard, W. M. Explicit Gibbs free energy equation of state applied to the carbon phase diagram. Phys. Rev. B 61, 8734–8743 (2000).

    Article  ADS  Google Scholar 

  16. Shaner, F. W., Brown, J. M., Swenson, C. A. & McQueen, R. G. Sound velocity of carbon at high pressures. J. Phys. (Paris), Colloq. 45, C8-235–237 (1984).

    Article  Google Scholar 

  17. Hicks, D. G. et al. High precision measurements of the diamond Hugoniot in and above the melt region. Phys. Rev. B 78, 174102 (2008).

    Article  ADS  Google Scholar 

  18. Nagao, H. et al. Hugoniot measurement of diamond under laser shock compression up to 2 TPa. Phys. Plasmas 13, 052705 (2006).

    Article  ADS  Google Scholar 

  19. Knudson, M. D., Desjarlais, M. P. & Dolan, D. H. Shock-wave exploration of the high-pressure phases of carbon. Science 322, 1822–1825 (2008).

    Article  ADS  Google Scholar 

  20. Brygoo, S. et al. Laser-shock compression of diamond and evidence of a negative slope melting curve. Nature Mater. 6, 274–277 (2007).

    Article  ADS  Google Scholar 

  21. Hicks, D. G. et al. Dissociation of liquid silica at high pressures and temperatures. Phys. Rev. Lett. 97, 025502 (2006).

    Article  ADS  Google Scholar 

  22. Lyon, S. P. & Johnson, J. D. Diamond Sesame Table. Report No. LA-UR-92-3407 (Los Alamos National Laboratory, 1992).

  23. Miller, J. E. et al. Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA. Rev. Sci. Instrum. 78, 034903 (2006).

    Article  ADS  Google Scholar 

  24. Collins, G. W. et al. Temperature measurements of shock compressed liquid deuterium up to 230 GPa. Phys. Rev. Lett. 87, 165504 (2001).

    Article  ADS  Google Scholar 

  25. Kormer, S. B. Optical study of the characteristics of shock-compressed condensed dielectrics. Sov. Phys. Usp. 11, 229–254 (1968).

    Article  ADS  Google Scholar 

  26. Scandolo, S., Chiarotti, G. L. & Tosatti, E. SC4: A metallic phase of carbon at terapascal pressures. Phys. Rev. B 53, 5051–5054 (1996).

    Article  ADS  Google Scholar 

  27. Keeler, R. N. & Royce, E. B. in Physics of High Energy, Density (eds Caldirola, P. & Knoepfel, H.) 88 (Academic, 1971).

    Google Scholar 

  28. Goodstein, D. L. States of Matter (Dover, 1985).

    Google Scholar 

  29. Hubbard, W. B. et al. Interior structure of Neptune: Comparison with Uranus. Science 253, 648–651 (1991).

    Article  ADS  Google Scholar 

  30. Stanley, S. & Bloxham, J. Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151–153 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank W. Unites for sample support. This work was carried out under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Contributions

J.H.E., D.G.H., P.M.C., D.K.B. and T.R.B. designed and carried out the experiments. J.H.E., D.G.H., P.M.C. and R.S.M. carried out the analysis; J.E.M. and T.R.B. calibrated the SOP. R.J. and G.W.C. administered the experiment and J.H.E., R.J. and G.W.C. wrote the manuscript.

Corresponding author

Correspondence to J. H. Eggert.

Supplementary information

Supplementary Information

Supplementary Information (PDF 673 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eggert, J., Hicks, D., Celliers, P. et al. Melting temperature of diamond at ultrahigh pressure. Nature Phys 6, 40–43 (2010). https://doi.org/10.1038/nphys1438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing