Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Obtaining the phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases

Abstract

Experiments that use cold atoms in optical lattices to simulate the behaviour of strongly correlated solid-state systems promise to provide insight into a range of long-standing problems in many-body physics1,2,3,4,5,6,7,8,9,10. The goal of such ‘quantum simulations’ is to obtain information about homogeneous systems. Cold-gas experiments, however, are carried out in spatially inhomogeneous confining traps, which leads inevitably to different phases in the sample. This makes it difficult to deduce the properties of homogeneous phases with standard density imaging, which averages over different phases. Moreover, important properties such as superfluid density are inaccessible by standard imaging techniques, and will remain inaccessible even when systems of interest are successfully simulated. Here, we present algorithms for mapping out several properties of homogeneous systems, including superfluid density. Our scheme makes explicit use of the inhomogeneity of the trap, an approach that might turn the source of difficulty into a means of constructing solutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An illustration of the method to construct pressure from column density.
Figure 2: An illustration of the scheme for determining entropy density s(x).

Similar content being viewed by others

References

  1. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  2. Xu, K. et al. Observation of strong quantum depletion in a gaseous Bose–Einstein condensate. Phys. Rev. Lett. 96, 180405 (2006).

    Article  ADS  Google Scholar 

  3. Chin, J. K. et al. Evidence for superfluidity of ultracold fermions in an optical lattice. Nature 443, 961–964 (2006).

    Article  ADS  Google Scholar 

  4. Günter, K., Stöferle, T., Moritz, H., Köhl, M. & Esslinger, T. Bose–Fermi mixtures in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180402 (2006).

    Article  ADS  Google Scholar 

  5. Ospelkaus, S. et al. Localization of bosonic atoms by fermionic impurities in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180403 (2006).

    Article  ADS  Google Scholar 

  6. Spielman, I. B., Phillips, W. D. & Porto, J. V. Condensate fraction in a 2D Bose gas measured across the Mott-insulator transition. Phys. Rev. Lett. 100, 120402 (2008).

    Article  ADS  Google Scholar 

  7. Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science. 322, 1520–1525 (2008).

    Article  ADS  Google Scholar 

  8. Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).

    Article  ADS  Google Scholar 

  9. Shin, Y., Schunck, C.H., Schirotzek, A. & Ketterle, W. Phase diagram of a two-component Fermi gas with resonant interactions. Nature 451, 689–693 (2007).

    Article  ADS  Google Scholar 

  10. Gemelke, N., Zhang, X., Hung, C.-L. & Chin, C. In situ observation of incompressible Mott-insulating domains of ultracold atomic gases. Nature 460, 995–998 (2007).

    Article  ADS  Google Scholar 

  11. Ho, T. L & Zhou, Q. Intrinsic heating and cooling in adiabatic processes for bosons in optical lattices. Phys. Rev. Lett. 99, 120404 (2007).

    Article  ADS  Google Scholar 

  12. Cramer, M. et al. Do mixtures of bosonic and fermionic atoms adiabatically heat up in optical lattices? Phys. Rev. Lett. 100, 140409 (2008).

    Article  ADS  Google Scholar 

  13. Pollet, L., Kollath, C., Houcke, K. V. & Troyer, M. Temperature changes when adiabatically ramping up an optical lattice. New. J. Phys. 10, 065001 (2008).

    Article  ADS  Google Scholar 

  14. Yoshimura, S., Konabe, S. & Nikuni, T. Adiabatic cooling and heating of cold bosons in three-dimensional optical lattices and the superfluid–normal phase transition. Phys. Rev. A. 78, 015602 (2008).

    Article  ADS  Google Scholar 

  15. Gericke, T., Würtz, P., Reitz, D., Langen, T. & Ott, H. High-resolution scanning electron microscopy of an ultracold quantum gas. Nature Phys. 4, 949–953 (2008).

    Article  ADS  Google Scholar 

  16. Trotzky, S. et al. Suppression of the critical temperature for superfluidity near the Mott transition: Validating a quantum simulator. Preprint at <http://arxiv.org/abs/0905.4882> (2009).

  17. Zhou, Q., Kato, Y., Kawashima, N. & Trivedi, N. Direct mapping of finite temperature phase diagram of strongly correlated quantum models. Phys. Rev. Lett. 103, 085701 (2009).

    Article  ADS  Google Scholar 

  18. Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B. & Dalibard, J. B. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006).

    Article  ADS  Google Scholar 

  19. Krüger, P., Hadzibabic, Z. & Dalibard, J. Critical point of an interacting two-dimensional atomic Bose gas. Phys. Rev. Lett. 99, 240402 (2008).

    Google Scholar 

  20. Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K. & Phillips, W. D. Observation of a 2D Bose-gas: From thermal to quasi-condensate to superfluid. Phys. Rev. Lett. 100, 120402 (2008).

    Article  Google Scholar 

  21. Khalatnikov, I. M. An Introduction to the Theory of Superfludity (W. A. Benjamin, 1965).

    Google Scholar 

  22. Ho, T. L. & Shenoy, V. B. The hydrodynamic equations of superfluid mixtures in magnetic traps. J. Low Temperature Phys. 111, 937–952 (1998).

    Article  ADS  Google Scholar 

  23. Greiner, M. & Fölling, S. Optical lattices. Nature 453, 736–738 (2008).

    Article  ADS  Google Scholar 

  24. Cho, A. The mad dash to make light crystals. Science 320, 312–313 (2008).

    Article  Google Scholar 

  25. Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Phys. Rev. Lett. 101, 155303 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSF grants DMR0705989 and PHY05555576, and by DARPA under the Army Research Office Grant Nos W911NF-07-1-0464 and W911NF0710576.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this letter.

Corresponding authors

Correspondence to Tin-Lun Ho or Qi Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, TL., Zhou, Q. Obtaining the phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases. Nature Phys 6, 131–134 (2010). https://doi.org/10.1038/nphys1477

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1477

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing