Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of spin excitations into the superconducting state in FeTe1−xSex

Abstract

The origin of the superconducting state in the recently discovered Fe-based materials1,2,3 is the subject of intense scrutiny. Neutron scattering4,5,6,7 and NMR (ref. 8) measurements have already demonstrated a strong correlation between magnetism and superconductivity. A central unanswered question concerns the nature of the normal-state spin fluctuations that may be responsible for the pairing. Here we present inelastic neutron scattering measurements from large single crystals of superconducting and non-superconducting Fe1+yTe1−xSex. These measurements indicate a spin fluctuation spectrum dominated by two-dimensional incommensurate excitations extending to energies greater than 250 meV. Most importantly, the spin excitations in Fe1+yTe1−xSex have four-fold symmetry about the (1, 0) wavevector (square-lattice (π,π) point). Moreover, the excitations are described by the identical wavevector and can be characterized by the same model as the normal-state spin excitations in the high-TC cuprates9,10,11. These results demonstrate commonality between the magnetism in these classes of materials, which perhaps extends to a common origin for superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reciprocal space for Fe1+yTe1−xSex compounds.
Figure 2: Constant-energy plots of the magnetic excitations in Fe1+yTe1−xSex projected onto the HK plane.
Figure 3: Constant-energy plots of the magnetic excitation spectrum at an energy transfer of 6±1 meV.
Figure 4: Dispersion of the magnetic excitations in Fe1+yTe1−xSex.

Similar content being viewed by others

References

  1. Kamihara, Y. et al. Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with TC=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  Google Scholar 

  2. Chen, X. C. et al. Superconductivity at 43 K in SmFeAsO1−xFx . Nature 453, 761–762 (2008).

    Article  ADS  Google Scholar 

  3. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Article  ADS  Google Scholar 

  4. Christianson, A. D. et al. Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature 456, 930–932 (2008).

    Article  ADS  Google Scholar 

  5. Lumsden, M. D. et al. Two-dimensional resonant magnetic excitation in BaFe1.84Co0.16As2 . Phys. Rev. Lett. 102, 107005 (2009).

    Article  ADS  Google Scholar 

  6. Chi, S. et al. Inelastic neutron-scattering measurements of a three-dimensional spin resonance in the FeAs-based BaFe1.9Ni0.1As2 superconductor. Phys. Rev. Lett. 102, 107006 (2009).

    Article  ADS  Google Scholar 

  7. Mook, H. A. et al. Neutron scattering patterns show superconductivity in FeTe0.5Se0.5 likely results from itinerant electron fluctuations. Preprint at <http://arxiv.org/abs/0904.2178v1> (2009).

  8. Ning, F. et al. Spin susceptibility, phase diagram, and quantum criticality in the electron-doped high TC superconductor Ba(Fe1−xCox)2As2 . J. Phys. Soc. Jpn 78, 013711 (2009).

    Article  ADS  Google Scholar 

  9. Cheong, S.-W. et al. Incommensurate magnetic fluctuations in La2−xSrxCuO4 . Phys. Rev. Lett. 67, 1791–1794 (1991).

    Article  ADS  Google Scholar 

  10. Dai, P., Mook, H. A. & Dogan, F. Incommensurate magnetic fluctuations in YBa2Cu3O6.6 . Phys. Rev. Lett. 80, 1738–1741 (1998).

    Article  ADS  Google Scholar 

  11. Mook, H. A. et al. Spin fluctuations in YBa2Cu3O6.6 . Nature 395, 580–582 (1998).

    Article  ADS  Google Scholar 

  12. Chen, G. F. et al. Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1−xFxFeAs. Phys. Rev. Lett. 100, 247002 (2008).

    Article  ADS  Google Scholar 

  13. Ren, Z. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1−xFx]FeAs. Chin. Phys. Lett. 25, 2215–2216 (2008).

    Article  ADS  Google Scholar 

  14. Wang, X. et al. The superconductivity at 18 K in LiFeAs system. Solid State Commun. 148, 538–540 (2008).

    ADS  Google Scholar 

  15. Hsu, F.-C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262–14264 (2008).

    Article  ADS  Google Scholar 

  16. Yeh, K.-W. et al. Tellurium substitution effect on superconductivity of the α-phase iron selenide. Europhys. Lett. 84, 37002 (2008).

    Article  ADS  Google Scholar 

  17. de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).

    Article  ADS  Google Scholar 

  18. McGuire, M. A. et al. Phase transitions in LaFeAsO: Structural, magnetic, elastic, and transport properties, heat capacity and Mössbauer spectra. Phys. Rev. B 78, 094517 (2008).

    Article  ADS  Google Scholar 

  19. Huang, Q. et al. Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors. Phys. Rev. Lett. 101, 257003 (2008).

    Article  ADS  Google Scholar 

  20. Bao, W. et al. Tunable (δπ,δπ)-type antiferromagnetic order in α-Fe(Te, Se) superconductors. Phys. Rev. Lett. 102, 247001 (2009).

    Article  ADS  Google Scholar 

  21. Qiu, Y. et al. Spin gap and resonance at the nesting wave vector in superconducting FeSe0.4Te0.6 . Phys. Rev. Lett. 103, 067008 (2009).

    Article  ADS  Google Scholar 

  22. Sales, B. C. et al. Bulk superconductivity at 14 K in single crystals of Fe1+yTexSe1−x . Phys. Rev. B 79, 094521 (2009).

    Article  ADS  Google Scholar 

  23. Stock, C. et al. From incommensurate to dispersive spin fluctuations: The high energy inelastic spectrum in superconducting YBa2Cu3O6.5 . Phys. Rev. B 71, 024522 (2005).

    Article  ADS  Google Scholar 

  24. Vignolle, B. et al. Two energy scales in the spin excitations of the high-temperature superconductor La2−xSrxCuO4 . Nature Phys. 3, 163–167 (2007).

    Article  ADS  Google Scholar 

  25. Wen, J. et al. Coexistence and competition of short-range magnetic order and superconductivity in Fe1+δTe1−xSex . Phys. Rev. B 80, 104506 (2009).

    Article  ADS  Google Scholar 

  26. Zhang, L., Singh, D. J. & Du, M. H. Density functional study of excess Fe in Fe1+xTe: Magnetism and doping. Phys. Rev. B 79, 012506 (2009).

    Article  ADS  Google Scholar 

  27. Sato, H. & Maki, K. Theory of inelastic neutron scattering from Cr and its alloys near the Néel temperature. Int. J. Magn. 6, 183–209 (1974).

    Google Scholar 

  28. Hayden, S. M. et al. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004).

    Article  ADS  Google Scholar 

  29. Mazin, I. I. et al. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−xFx . Phys. Rev. Lett. 101, 057003 (2008).

    Article  ADS  Google Scholar 

  30. Kuroki, K. et al. Unconventional pairing originating from the disconnected fermi surfaces of superconducting LaFeAsO1−xFx . Phys. Rev. Lett. 101, 087004 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with D. Singh and T. Maier. This work was supported by the Scientific User Facilities Division and the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

All authors made critical comments on the manuscript. M.D.L., A.D.C., E.A.G., S.E.N., M.B.S., D.L.A., T.G., G.J.M., C.C. and H.A.M. all contributed to data collection. A.S.S., M.A.M., B.C.S. and D.M. contributed to sample synthesis and characterization.

Corresponding authors

Correspondence to M. D. Lumsden or A. D. Christianson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 794 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumsden, M., Christianson, A., Goremychkin, E. et al. Evolution of spin excitations into the superconducting state in FeTe1−xSex. Nature Phys 6, 182–186 (2010). https://doi.org/10.1038/nphys1512

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1512

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing