Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system

Abstract

The strong coupling of photons and matter1 in semiconductor nanocavities has been a test bed for cavity quantum electrodynamics2,3 (QED). Vacuum Rabi oscillation4,5,6,7,8—the coherent exchange of a single quantum between a single quantum dot (SQD) and an optical cavity—and highly efficient cavity-QED lasers9,10,11,12,13,14,15,16,17,18,19 have both been reported. The coexistence of vacuum Rabi oscillation and laser oscillation seems to be contradictory, but it has recently been predicted theoretically that the strong-coupling effect could be sustained in laser oscillation20. Here, we demonstrate the onset of lasing in the strong-coupling regime in an SQD–cavity system. A high-quality semiconductor optical nanocavity and strong SQD–field coupling enabled the onset of lasing while maintaining the fragile coherent exchange of quanta.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PhC structure and optical characteristics.
Figure 2: Experimental and computed photoluminescence spectra at various pump powers.
Figure 3: Analyses of the experimental and computed photoluminescence spectra.
Figure 4: Mean cavity photon number Nph,g(2)(0) and photoluminescence spectra in lasing and strong-coupling regimes.

Similar content being viewed by others

References

  1. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  2. Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

    Article  ADS  Google Scholar 

  3. Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Phys. 4, 859–863 (2008).

    Article  ADS  Google Scholar 

  4. Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  5. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  6. Peter, E. et al. Exciton–photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).

    Article  ADS  Google Scholar 

  7. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  8. Englund, D. et al. Coherent excitation of a strongly coupled quantum dot–cavity system. Preprint at <http://arxiv.org/abs/0902.2428> (2009).

  9. Xie, Z. G. et al. Influence of a single quantum dot state on the characteristics of a microdisk laser. Phys. Rev. Lett. 98, 117401 (2007).

    Article  ADS  Google Scholar 

  10. Reitzenstein, S. et al. Single quantum dot controlled lasing effects in high-Q micropillar cavities. Opt. Express 16, 4848–4857 (2008).

    Article  ADS  Google Scholar 

  11. Vučković, J., Painter, O., Xu, Y., Yariv, A. & Scherer, A. Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities. IEEE J. Quant. Electron. 35, 1168–1175 (1999).

    Article  ADS  Google Scholar 

  12. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  13. Park, H.-G. et al. Nondegenerate monopole-mode two-dimensional photonic band gap laser. Appl. Phys. Lett. 79, 3032–3034 (2001).

    Article  ADS  Google Scholar 

  14. Strauf, S. et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006).

    Article  ADS  Google Scholar 

  15. Nomura, M. et al. Room temperature continuous-wave lasing in photonic crystal nanocavity. Opt. Express 14, 6308–6315 (2006).

    Article  ADS  Google Scholar 

  16. Nozaki, K., Kita, S. & Baba, T. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express 15, 7506–7514 (2007).

    Article  ADS  Google Scholar 

  17. Nomura, M. et al. Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor. Phys. Rev. B 75, 195313 (2007).

    Article  ADS  Google Scholar 

  18. Ulrich, S. M. et al. Photon statistics of semiconductor microcavity lasers. Phys. Rev. Lett. 98, 043906 (2007).

    Article  ADS  Google Scholar 

  19. Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y. & Arakawa, Y. Photonic crystal nanocavity laser with a single quantum dot gain. Opt. Express 17, 15975–15982 (2009).

    Article  ADS  Google Scholar 

  20. Valle, E. D., Laussy, F. P. & Tejedor, C. Luminescence spectra of quantum dots in microcavities. II. Fermions. Phys. Rev. B 79, 235326 (2009).

    Article  ADS  Google Scholar 

  21. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  22. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals (Princeton Univ. Press, 1995).

    MATH  Google Scholar 

  23. Akahane, Y., Asano, T., Song, B.-S. & Noda, S. Fine-tuned high-Q photonic-crystal nanocavity. Opt. Express 13, 1202–1214 (2005).

    Article  ADS  Google Scholar 

  24. Rice, P. R. & Carmichael, H. J. Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy. Phys. Rev. A 50, 4318–4329 (1994).

    Article  ADS  Google Scholar 

  25. Borri, P. et al. Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001).

    Article  ADS  Google Scholar 

  26. Laussy, F. P., Valle, E. D. & Tejedor, C. Strong coupling of quantum dots in microcavities. Phys. Rev. Lett. 101, 083601 (2008).

    Article  ADS  Google Scholar 

  27. Laucht, A. et al. Dephasing of quantum dot exciton polaritons in electrically tunable nanocavities. Phys. Rev. Lett. 103, 087405 (2009).

    Article  ADS  Google Scholar 

  28. Bjork, G., Karlsson, A. & Yamamoto, Y. Definition of a laser threshold. Phys. Rev. A 50, 1675–1680 (1994).

    Article  ADS  Google Scholar 

  29. McKeever, J., Boca, A., Boozer, A. D., Buck, J. R. & Kimble, H. J. Experimental realization of a one-atom laser in the regime of strong coupling. Nature 425, 268–271 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Ishida, M. Shirane, S. Ohkouchi, Y. Igarashi, A. Tandaechanurat, K. Watanabe, T. Nakaoka, S. Kako and K. Aoki for their technical support and fruitful discussions. This research was supported by the Special Coordination Funds for Promoting Science and Technology and by KAKENHI 20760030, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

M.N. processed the samples, carried out the experiments, the simulations and data analyses. N.K. fabricated the semiconductor wafer. S.I. administrated the experiments. Y.O. assisted M.N.’s experiments. Y.A. and M.N. conceived and designed the project. M.N., S.I. and Y.A. wrote the manuscript. All authors contributed to discussion of the results.

Corresponding authors

Correspondence to M. Nomura or Y. Arakawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 325 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, M., Kumagai, N., Iwamoto, S. et al. Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system. Nature Phys 6, 279–283 (2010). https://doi.org/10.1038/nphys1518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing