Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice

Abstract

Control over all internal and external degrees of freedom of molecules at the level of single quantum states will enable a series of fundamental studies in physics and chemistry1,2. In particular, samples of ground-state molecules at ultralow temperatures and high number densities will facilitate new quantum-gas studies3 and future applications in quantum information science4. However, high phase-space densities for molecular samples are not readily attainable because efficient cooling techniques such as laser cooling are lacking. Here we produce an ultracold and dense sample of molecules in a single hyperfine level of the rovibronic ground state with each molecule individually trapped in the motional ground state of an optical lattice well. Starting from a zero-temperature atomic Mott-insulator state5 with optimized double-site occupancy6, weakly bound dimer molecules are efficiently associated on a Feshbach resonance7 and subsequently transferred to the rovibronic ground state by a stimulated four-photon process with >50% efficiency. The molecules are trapped in the lattice and have a lifetime of 8 s. Our results present a crucial step towards Bose–Einstein condensation of ground-state molecules and, when suitably generalized to polar heteronuclear molecules, the realization of dipolar quantum-gas phases in optical lattices8,9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular quantum-gas preparation procedure.
Figure 2: Molecular potentials and level schemes for ground-state transfer.
Figure 3: STIRAP transfer to the rovibronic ground state |5〉=|ν=0,J=0〉 and back.
Figure 4: Lattice band structure for |v=0〉 molecules.
Figure 5: Lifetime of trapped ground-state molecules in the optical lattice.

Similar content being viewed by others

References

  1. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: Science, technology and applications. New. J. Phys. 11, 055049 (2009).

    Article  ADS  Google Scholar 

  2. Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

    Article  Google Scholar 

  3. Góral, K., Santos, L. & Lewenstein, M. Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett. 88, 170406 (2002).

    Article  ADS  Google Scholar 

  4. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article  ADS  Google Scholar 

  5. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  Google Scholar 

  6. Volz, T. et al. Preparation of a quantum state with one molecule at each site of an optical lattice. Nature Phys. 2, 692–695 (2006).

    Article  ADS  Google Scholar 

  7. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Preprint at <http://arxiv.org/abs/0812.1496v2> (2008).

  8. Baranov, M. A. Theoretical progress in many-body physics with ultracold dipolar gases. Phys. Rep. 464, 71–111 (2008).

    Article  ADS  Google Scholar 

  9. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    Article  ADS  Google Scholar 

  10. Pupillo, G., Micheli, A., Büchler, H. P. & Zoller, P. in Cold Molecules: Theory, Experiment, Applications (eds Krems, R. V., Stwalley, W. C. & Friedrich, B.) 421–469 (CRC Press, 2009).

    Google Scholar 

  11. Friedrich, B. & Doyle, J. M. Why are cold molecules so hot? ChemPhysChem 10, 604–623 (2009).

    Article  Google Scholar 

  12. Jaksch, D., Venturi, V., Cirac, J. I., Williams, C. J. & Zoller, P. Creation of a molecular condensate by dynamically melting a Mott insulator. Phys. Rev. Lett. 89, 040402 (2002).

    Article  ADS  Google Scholar 

  13. DeMille, D. et al. Enhanced sensitivity to variation of me/mp in molecular spectra. Phys. Rev. Lett. 100, 043202 (2008).

    Article  ADS  Google Scholar 

  14. Zelevinsky, T., Kotochigova, S. & Ye, J. Precision test of mass-ratio variations with lattice-confined ultracold molecules. Phys. Rev. Lett. 100, 043201 (2008).

    Article  ADS  Google Scholar 

  15. Danzl, J. G. et al. Quantum gas of deeply bound ground state molecules. Science 321, 1062–1066 (2008).

    Article  ADS  Google Scholar 

  16. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article  ADS  Google Scholar 

  17. Winkler, K. et al. Coherent optical transfer of Feshbach molecules to a lower vibrational state. Phys. Rev. Lett. 98, 043201 (2007).

    Article  ADS  Google Scholar 

  18. Lang, F., Winkler, K., Strauss, C., Grimm, R. & Denschlag, J. H. Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133005 (2008).

    Article  ADS  Google Scholar 

  19. Kraemer, T. et al. Optimized production of a cesium Bose–Einstein condensate. Appl. Phys. B 79, 1013–1019 (2004).

    Article  ADS  Google Scholar 

  20. Thalhammer, G. et al. Long-lived Feshbach molecules in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 050402 (2006).

    Article  ADS  Google Scholar 

  21. Mark, M. et al. Spectroscopy of ultracold trapped cesium Feshbach molecules. Phys. Rev. A 76, 042514 (2007).

    Article  ADS  Google Scholar 

  22. Danzl, J. G. et al. Deeply bound ultracold molecules in an optical lattice. New J. Phys. 11, 055036 (2009).

    Article  ADS  Google Scholar 

  23. Bergmann, K., Theuer, H. & Shore, B. W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).

    Article  ADS  Google Scholar 

  24. Aldegunde, J. & Hutson, J. M. Hyperfine energy levels of alkali-metal dimers: Ground-state homonuclear molecules in magnetic fields. Phys. Rev. A 79, 013401 (2009).

    Article  ADS  Google Scholar 

  25. Malinovsky, V. S. & Tannor, D. J. Simple and robust extension of the stimulated Raman adiabatic passage technique to N-level systems. Phys. Rev. A 56, 4929–4937 (1997).

    Article  ADS  Google Scholar 

  26. Mark, M. J. et al. Dark resonances for ground-state transfer of molecular quantum gases. Appl. Phys. B 95, 219–225 (2009).

    Article  ADS  Google Scholar 

  27. Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734–1738 (2008).

    Article  ADS  Google Scholar 

  28. Pilch, K. et al. Observation of interspecies Feshbach resonances in an ultracold Rb–Cs mixture. Phys. Rev. A 79, 042718 (2009).

    Article  ADS  Google Scholar 

  29. Herbig, J. et al. Preparation of a pure molecular quantum gas. Science 301, 1510–1513 (2003).

    Article  ADS  Google Scholar 

  30. Danzl, J. G. et al. Precision molecular spectroscopy for ground state transfer of molecular quantum gases. Faraday Discuss. 142, 283–295 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Ritsch, S. Dürr, N. Bouloufa and O. Dulieu for valuable discussions. We are indebted to R. Grimm for generous support and to H. Häffner for the loan of a charge-coupled camera. We gratefully acknowledge financial support by the Austrian Ministry of Science and Research (Bundesministerium für Wissenschaft und Forschung) and the Austrian Science Fund (Fonds zur Förderung der wissenschaftlichen Forschung) in the form of a START prize grant and by the European Science Foundation within the framework of the EuroQUASAR collective research project QuDeGPM and within the framework of the EuroQUAM collective research project QuDipMol. R.H. is supported by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this letter.

Corresponding authors

Correspondence to Johann G. Danzl or Hanns-Christoph Nägerl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danzl, J., Mark, M., Haller, E. et al. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nature Phys 6, 265–270 (2010). https://doi.org/10.1038/nphys1533

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1533

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing